Margins
Beyond Weird book cover
Beyond Weird
2018
First Published
4.10
Average Rating
374
Number of Pages

'This is the book I wish I could have written but am very glad I've read' Jim Al-Khalili ‘I think I can safely say that nobody understands quantum mechanics.’ Richard Feynman wrote this in 1965 – the year he was awarded the Nobel prize in physics for his work on quantum mechanics. Quantum physics is regarded as one of the most obscure and impenetrable subjects in all of science. But when Feynman said he didn’t understand quantum mechanics, he didn’t mean that he couldn’t do it – he meant that’s all he could do. He didn’t understand what the maths was saying: what quantum mechanics tells us about reality. Over the past decade or so, the enigma of quantum mechanics has come into sharper focus. We now realise that quantum mechanics is less about particles and waves, uncertainty and fuzziness, than a theory about information: about what can be known and how. This is more disturbing than our bad habit of describing the quantum world as ‘things behaving weirdly’ suggests. It calls into question the meanings and limits of space and time, cause and effect, and knowledge itself. The quantum world isn’t a different world: it is our world, and if anything deserves to be called ‘weird’, it’s us. This exhilarating book is about what quantum maths really means – and what it doesn’t mean.

Avg Rating
4.10
Number of Ratings
1,145
5 STARS
38%
4 STARS
41%
3 STARS
16%
2 STARS
4%
1 STARS
1%
goodreads

Author

Philip Ball
Philip Ball
Author · 31 books
Philip Ball (born 1962) is an English science writer. He holds a degree in chemistry from Oxford and a doctorate in physics from Bristol University. He was an editor for the journal Nature for over 10 years. He now writes a regular column in Chemistry World. Ball's most-popular book is the 2004 Critical Mass: How One Things Leads to Another, winner of the 2005 Aventis Prize for Science Books. It examines a wide range of topics including the business cycle, random walks, phase transitions, bifurcation theory, traffic flow, Zipf's law, Small world phenomenon, catastrophe theory, the Prisoner's dilemma. The overall theme is one of applying modern mathematical models to social and economic phenomena.
548 Market St PMB 65688, San Francisco California 94104-5401 USA
© 2025 Paratext Inc. All rights reserved