Margins
Dirac Operators and Spectral Geometry book cover
Dirac Operators and Spectral Geometry
1998
First Published
224
Number of Pages

Part of Series

The Dirac operator has many useful applications in theoretical physics and mathematics. This book provides a clear, concise and self-contained introduction to the global theory of the Dirac operator and to the analysis of spectral asymptotics with local or nonlocal boundary conditions. The theory is introduced at a level suitable for graduate students. Numerous examples are then given to illustrate the peculiar properties of the Dirac operator, and the role of boundary conditions in heat-kernel asymptotics and quantum field theory. Topics covered include the introduction of spin-structures in Riemannian and Lorentzian manifolds; applications of index theory; heat-kernel asymptotics for operators of Laplace type; quark boundary conditions; one-loop quantum cosmology; conformally covariant operators; and the role of the Dirac operator in some recent investigations of four-manifolds. This volume provides graduate students with a rigorous introduction and researchers with a invaluable reference to the Dirac operator and its applications in theoretical physics.

Author

548 Market St PMB 65688, San Francisco California 94104-5401 USA
© 2025 Paratext Inc. All rights reserved