Margins
Graduate Texts in Mathematics book cover 1
Graduate Texts in Mathematics book cover 2
Graduate Texts in Mathematics book cover 3
Graduate Texts in Mathematics
Series · 240
books · 1899-2014

Books in series

Measure and Category book cover
#2

Measure and Category

A Survey of the Analogies between Topological and Measure Spaces

1971

In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.
Topological Vector Spaces book cover
#3

Topological Vector Spaces

1971

Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C^\ and W^\ algebras.
A Course in Homological Algebra book cover
#4

A Course in Homological Algebra

1972

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.
Categories for the Working Mathematician book cover
#5

Categories for the Working Mathematician

1971

Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is on symmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories.
#6

Projective Planes

1973

A Course in Arithmetic (Graduate Texts in Mathematics, Vol. 7) book cover
#7

A Course in Arithmetic (Graduate Texts in Mathematics, Vol. 7)

1970

Serre's A Course in Arithmetic is a concentrated, modern introduction to basically three areas of number theory, quadratic forms, Dirichlet's density theorem, and modular forms. The first edition was very well accepted and is now one of the leading introductory texts on the advanced undergraduate or beginning graduate level. From the reviews: .,." The book is carefully written - in particular very much self-contained. As was the intention of the author, it is easily accessible to graduate or even undergraduate students, yet even the advanced mathematician will enjoy reading it. The last chapter, more difficult for the beginner, is an introduction to contemporary problems." "American Scientist"
Axiomatic Set Theory book cover
#8

Axiomatic Set Theory

1973

This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda­ mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.
Introduction to Lie Algebras and Representation Theory book cover
#9

Introduction to Lie Algebras and Representation Theory

1973

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor­ porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
A Course in Simple-Homotopy Theory book cover
#10

A Course in Simple-Homotopy Theory

1973

This book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970. I wrote it because of a strong belief that there should be readily available a semi-historical and geo­ metrically motivated exposition of J. H. C. Whitehead's beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the fact that the major uses of, and advances in, the theory in recent times-for example, the s-cobordism theorem (discussed in §25), the use of the theory in surgery, its extension to non-compact complexes (discussed at the end of §6) and the proof of topological invariance (given in the Appendix)-have come from just such an understanding. A second reason for writing the book is pedagogical. This is an excellent subject for a topology student to "grow up" on. The interplay between geometry and algebra in topology, each enriching the other, is beautifully illustrated in simple-homotopy theory. The subject is accessible (as in the courses mentioned at the outset) to students who have had a good one­ semester course in algebraic topology. I have tried to write proofs which meet the needs of such students. (When a proof was omitted and left as an exercise, it was done with the welfare of the student in mind. He should do such exercises zealously.
Functions of One Complex Variable book cover
#11

Functions of One Complex Variable

1973

"This book presents a basic introduction to complex analysis in both an interesting and a rigorous manner. It contains enough material for a full year's course, and the choice of material treated is reasonably standard and should be satisfactory for most first courses in complex analysis. The approach to each topic appears to be carefully thought out both as to mathematical treatment and pedagogical presentation, and the end result is a very satisfactory book." —MATHSCINET
Rings and Categories of Modules book cover
#13

Rings and Categories of Modules

1974

This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil­ iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de­ composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course" many important areas of ring and module theory that the text does not touch upon.
Stable Mappings and Their Singularities book cover
#14

Stable Mappings and Their Singularities

1974

This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn Rm (m 2n - 1) and R2 R2, and Marston Morse, for mappings who studied these singularities for Rn R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in \[42\]) gave the first general exposition of this theory. However, these notes preceded the work of Bernard Malgrange \[23\] on what is now known as the Malgrange Preparation Theorem-which allows the relatively easy computation of normal forms of stable singularities as well as the proof of the main theorem in the subject-and the definitive work of John Mather. More recently, two survey articles have appeared, by Arnold \[4\] and Wall \[53\], which have done much to codify the new material; still there is no totally accessible description of this subject for the beginning student. We hope that these notes will partially fill this gap. In writing this manuscript, we have repeatedly cribbed from the sources mentioned above-in particular, the Thom-Levine notes and the six basic papers by Mather."
Lectures in Functional Analysis and Operator Theory book cover
#15

Lectures in Functional Analysis and Operator Theory

1974

The Structure of Fields book cover
#16

The Structure of Fields

2014

Libro usado en buenas condiciones, por su antiguedad podria contener señales normales de uso
Random Processes book cover
#17

Random Processes

1962

Book by Rosenblatt, M.
Measure Theory book cover
#18

Measure Theory

1974

Useful as a text for students and a reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory most useful for its application in modern analysis. Coverage includes sets and classes, measures and outer measures, Haar measure and measure and topology in groups. From the "Will serve the interested student to find his way to active and creative work in the field of Hilbert space theory." —MATHEMATICAL REVIEWS
A Hilbert Space Problem Book book cover
#19

A Hilbert Space Problem Book

1967

From the "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."
Linear Algebraic Groups book cover
#21

Linear Algebraic Groups

1975

James E. Humphreys is a distinguished Professor of Mathematics at the University of Massachusetts at Amherst. He has previously held posts at the University of Oregon and New York University. His main research interests include group theory and Lie algebras, and this graduate level text is an exceptionally well-written introduction to everything about linear algebraic groups.
An Algebraic Introduction to Mathematical Logic book cover
#22

An Algebraic Introduction to Mathematical Logic

1975

This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a sub­stantial course on abstract algebra. Consequently, our treatment of the sub­ject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based—rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Linear Algebra book cover
#23

Linear Algebra

1967

This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica­ tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van­ stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading.
Geometric Functional Analysis and Its Applications book cover
#24

Geometric Functional Analysis and Its Applications

1975

New Springer-Verlag (New York), 1975. First Edition and First Printing. Octavo, yellow glossy cloth boards imprinted in white and black, x + 246 pp. Near Fine; spine is just a bit darker then the front cover, touch of light smudge on page edges, faint soil at places on cover (does not show in scans). A sharp, bright, tight Near Fine example of an extraordinarily rare and collectible mathematics hardcover first edition, first printing. Please see scans. LT13
Real and Abstract Analysis book cover
#25

Real and Abstract Analysis

A Modern Treatment of the Theory of Functions of a Real Variable

1965

This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus­ tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro­ priate suggestions for skipping. We have given complete definitions, ex­ planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in ToM M. APOSTOL's Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], orWALTERRUDIN's Principles of Mathe­ matical Analysis [2nd Ed., McGraw-Hill Book Co., New York, 1964].
General Topology book cover
#27

General Topology

1954

John L. Kelley received his Ph.D. from The University of Virgnia in 1940. He taught at Notre Dame University and the University of Chicago prior to coming to the University of California at Berkeley. Since coming to Berkeley he has held visiting appointments at Tulane University, the University of Kansas, Cambridge University (as Fullbright Research Professor), and the Indian Institute of Technology at Kanpur. Professor Kelley is the author of several books and research articles on topology and functional analysis.
Commutative Algebra I book cover
#28

Commutative Algebra I

1975

From the Preface: "We have preferred to write a self-contained book which could be used in a basic graduate course of modern algebra. It is also with an eye to the student that we have tried to give full and detailed explanations in the proofs... We have also tried, this time with an eye to both the student and the mature mathematician, to give a many-sided treatment of our topics, not hesitating to offer several proofs of one and the same result when we thought that something might be learned, as to methods, from each of the proofs."
Commutative Algebra book cover
#29

Commutative Algebra

Volume II

1960

From the Preface: "topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra... the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered throughout the exposition. Thus, this volume can be used in part as an introduction to some basic concepts and the arithmetic foundations of algebraic geometry."
Lectures in Abstract Algebra I book cover
#30

Lectures in Abstract Algebra I

Basic Concepts

1951

The present volume is the first of three that will be published under the general title Lectures in Abstract Algebra. These vol umes are based on lectures which the author has given during the past ten years at the University of North Carolina, at The Johns Hopkins University, and at Yale "University. The general plan of the work IS as follows: The present first volume gives an introduction to abstract algebra and gives an account of most of the important algebraIc concepts. In a treatment of this type it is impossible to give a comprehensive account of the topics which are introduced. Nevertheless we have tried to go beyond the foundations and elementary properties of the algebraic sys tems. This has necessitated a certain amount of selection and omission. We feel that even at the present stage a deeper under standing of a few topics is to be preferred to a superficial under standing of many. The second and third volumes of this work will be more special ized in nature and will attempt to give comprehensive accounts of the topics which they treat. Volume II will bear the title Linear Algebra and will deal with the theorv of vectQ!\_JlP. -a. ces... . Volume III, The Theory of Fields and Galois Theory, will be con cerned with the algebraic structure offieras and with valuations of fields. All three volumes have been planned as texts for courses."
Lectures in Abstract Algebra book cover
#31

Lectures in Abstract Algebra

002

1953

A hardback textbook
Lectures in Abstract Algebra book cover
#32

Lectures in Abstract Algebra

III. Theory of Fields and Galois Theory

1964

The present volume completes the series of texts on algebra which the author began more than ten years ago. The account of field theory and Galois theory which we give here is based on the notions and results of general algebra which appear in our first volume and on the more elementary parts of the second volume, dealing with linear algebra. The level of the present work is roughly the same as that of Volume II. In preparing this book we have had a number of objectives in mind. First and foremost has been that of presenting the basic field theory which is essential for an understanding of modern algebraic number theory, ring theory, and algebraic geometry. The parts of the book concerned with this aspect of the subject are Chapters I, IV, and V dealing respectively with finite dimen­ sional field extensions and Galois theory, general structure theory of fields, and valuation theory. Also the results of Chapter IlIon abelian extensions, although of a somewhat specialized nature, are of interest in number theory. A second objective of our ac­ count has been to indicate the links between the present theory of fields and the classical problems which led to its development.
Differential Topology book cover
#33

Differential Topology

1976

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." ―MATHEMATICAL REVIEWS
Principles of Random Walk book cover
#34

Principles of Random Walk

1976

\- T. Watanabe, "Mathematical Reviews".
Several Complex Variables and Banach Algebras book cover
#35

Several Complex Variables and Banach Algebras

1976

Many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. While function theory has often been employed to answer algebraic questions such as the existence of idempotents in a Banach algebra, concepts arising from the study of Banach algebras including the maximal ideal space, the Silov boundary, Geason parts, etc. have led to new questions and to new methods of proofs in function theory. This book is concerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. The third edition of this book contains new material on; maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter containing commentaries on history and recent developments and an updated and expanded reading list.
Linear Topological Spaces book cover
#36

Linear Topological Spaces

1976

Linear Topological Spaces Graduate Texts in Mathematics
Mathematical Logic book cover
#37

Mathematical Logic

1976

From the "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data." There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.
Denumerable Markov Chains book cover
#40

Denumerable Markov Chains

with a chapter of Markov Random Fields by David Griffeath

1965

With the first edition out of print, we decided to arrange for republi­ cation of Denumerrible Markov Ohains with additional bibliographic material. The new edition contains a section Additional Notes that indicates some of the developments in Markov chain theory over the last ten years. As in the first edition and for the same reasons, we have resisted the temptation to follow the theory in directions that deal with uncountable state spaces or continuous time. A section entitled Additional References complements the Additional Notes. J. W. Pitman pointed out an error in Theorem 9-53 of the first edition, which we have corrected. More detail about the correction appears in the Additional Notes. Aside from this change, we have left intact the text of the first eleven chapters. The second edition contains a twelfth chapter, written by David Griffeath, on Markov random fields. We are grateful to Ted Cox for his help in preparing this material. Notes for the chapter appear in the section Additional Notes. J.G.K., J.L.S., A.W.K.
Modular Functions and Dirichlet Series in Number Theory book cover
#41

Modular Functions and Dirichlet Series in Number Theory

1976

A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Linear Representations of Finite Groups book cover
#42

Linear Representations of Finite Groups

1977

This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.
Rings of Continuous Functions book cover
#43

Rings of Continuous Functions

1960

The objective of this book is the systematic study of the ring of all real valued continuous functions on arbitrary topological spaces. Great emphasis is placed on the study of ideals, and on the associated residue class rings. Questions of extending continuous functions from a subspace to the entire space arise as a necessary adjunct and are dealt with in considerable detail. Many problems provide additional information about the material covered in the text.
Probability Theory I, 4th Edition book cover
#45

Probability Theory I, 4th Edition

1977

This fourth edition contains several additions. The main ones con­ cern three closely related Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba­ bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc­ tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ­ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac­ tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Probability Theory II book cover
#46

Probability Theory II

1978

This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculus. The material covered in Parts Two to Five inclusive requires about three to four semesters of graduate study. The introductory part may serve as a text for an undergraduate course in elementary probability theory. Numerous historical marks about results, methods, and the evolution of various fields are an intrinsic part of the text. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated.
Geometric Topology in Dimensions 2 and 3 book cover
#47

Geometric Topology in Dimensions 2 and 3

1977

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander \[Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 \[Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine \[A \] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander \[A \] appeared soon thereafter.
Linear Geometry book cover
#49

Linear Geometry

1977

This is essentially a book on linear algebra. But the approach is somewhat unusual in that we emphasise throughout the geometric aspect of the subject. The material is suitable for a course on linear algebra for mathe­ matics majors at North American Universities in their junior or senior year and at British Universities in their second or third year. However, in view of the structure of undergraduate courses in the United States, it is very possible that, at many institutions, the text may be found more suitable at the beginning graduate level. The book has two to provide a basic course in linear algebra up to, and including, modules over a principal ideal domain; and to explain in rigorous language the intuitively familiar concepts of euclidean, affine, and projective geometry and the relations between them. It is increasingly recognised that linear algebra should be approached from a geometric point of VIew. This applies not only to mathematics majors but also to mathematically-oriented natural scientists and engineers.
Fermat's Last Theorem book cover
#50

Fermat's Last Theorem

A Genetic Introduction to Algebraic Number Theory

1980

This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
A Course in Differential Geometry book cover
#51

A Course in Differential Geometry

1983

This English edition could serve as a text for a first year graduate course on differential geometry, as did for a long time the Chicago Notes of Chern mentioned in the Preface to the German Edition. Suitable references for ordin­ ary differential equations are Hurewicz, W. Lectures on ordinary differential equations. MIT Press, Cambridge, Mass., 1958, and for the topology of Massey, Algebraic Topology, Springer-Verlag, New York, 1977. Upon David Hoffman fell the difficult task of transforming the tightly constructed German text into one which would mesh well with the more relaxed format of the Graduate Texts in Mathematics series. There are some e1aborations and several new figures have been added. I trust that the merits of the German edition have survived whereas at the same time the efforts of David helped to elucidate the general conception of the Course where we tried to put Geometry before Formalism without giving up mathematical rigour. 1 wish to thank David for his work and his enthusiasm during the whole period of our collaboration. At the same time I would like to commend the editors of Springer-Verlag for their patience and good advice. Bonn Wilhelm Klingenberg June,1977 vii From the Preface to the German Edition This book has its origins in a one-semester course in differential geometry which 1 have given many times at Gottingen, Mainz, and Bonn.
Algebraic Geometry book cover
#52

Algebraic Geometry

1977

Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and will J.-P. Serre and A. Grothendieck in Paris. After receiving his Ph.D. from Princeton in 1963, Hartshrne became a Junior Fellow at Harvard, then taught there for several years. In 1972 he moved to California where he is now Professor at the University of California at Berkeley. He is the author of Residues and Duality(1966), Foundations of Projective Geometry (1967), Ample Subvarieties of Algebraic Varieties (1970), and numerous research articles. His current research interest is the geometry of projective varieties and vector bundles. He has been a visiting professor at the College de France and at Kyoto University, where he gave his lectures in French and in Japanese, respectively. Professor Hartshrne is married to Edie Churchill, educator, musician and therapist, and has two sons and one daughter. He has travelled widely, speaks several foreign languages, and is an experienced mountain climber. He is also an accomplished musician, playing flute, piano, and traditional Japanese music on the shakuhachi.
A Course in Mathematical Logic book cover
#53

A Course in Mathematical Logic

1977

Yuri Ivanovich Manin is a senior staff member at the Steklov Institute of the Academy of Sciences of the USSR and Professor at the University of Moscow. He is best known for his work in number theory and algebraic geometry; for the latter, he was awarded the Lenin Prize in 1967 when he was 30 years old. Professor Manin received his mathematical education at the University of Moscow from which he graduated in 1958 and obtained his Ph.D. in 1963. The present book developed from a course of lectures and reflects the author's exceptionally wide perspective of the subject. The topics which are discussed range from very modern problems in mathematical logic to quantum logic, the finite presentation of groups and linguistic and philosophical questions.
Combinatorics with Emphasis on the Theory of Graphs book cover
#54

Combinatorics with Emphasis on the Theory of Graphs

1977

Combinatorics and graph theory have mushroomed in recent years. Many overlapping or equivalent results have been produced. Some of these are special cases of unformulated or unrecognized general theorems. The body of knowledge has now reached a stage where approaches toward unification are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967), "Combinatorics needs fewer theorems and more theory. " In this book we are doing two things at the same time: A. We are presenting a unified treatment of much of combinatorics and graph theory. We have constructed a concise algebraically­ based, but otherwise self-contained theory, which at one time embraces the basic theorems that one normally wishes to prove while giving a common terminology and framework for the develop­ment of further more specialized results. B. We are writing a textbook whereby a student of mathematics or a mathematician with another specialty can learn combinatorics and graph theory. We want this learning to be done in a much more unified way than has generally been possible from the existing literature. Our most difficult problem in the course of writing this book has been to keep A and B in balance. On the one hand, this book would be useless as a textbook if certain intuitively appealing, classical combinatorial results were either overlooked or were treated only at a level of abstraction rendering them beyond all recognition.
Introduction to Operator Theory I book cover
#55

Introduction to Operator Theory I

Elements of Functional Analysis

2012

Introduction to Operator Theory Elements of Functional Analysis. great thoeries
Algebraic Topology book cover
#56

Algebraic Topology

1989

William S. Massey Professor Massey, born in Illinois in 1920, received his bachelor's degree from the University of Chicago and then served for four years in the U.S. Navy during World War II. After the War he received his Ph.D. from Princeton University and spent two additional years there as a post-doctoral research assistant. He then taught for ten years on the faculty of Brown University, and moved to his present position at Yale in 1960. He is the author of numerous research articles on algebraic topology and related topics. This book developed from lecture notes of courses taught to Yale undergraduate and graduate students over a period of several years.
p-adic Numbers, p-adic Analysis, and Zeta-Functions book cover
#58

p-adic Numbers, p-adic Analysis, and Zeta-Functions

1977

The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60) book cover
#60

Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60)

1978

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Elements of Homotopy Theory (Graduate Texts in Mathematics, Vol. 61) book cover
#61

Elements of Homotopy Theory (Graduate Texts in Mathematics, Vol. 61)

1979

As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.
Fundamentals of the Theory of Groups book cover
#62

Fundamentals of the Theory of Groups

2011

The present edition differs from the first in several places. In particular our treatment of polycyclic and locally polycyclic groups-the most natural generalizations of the classical concept of a finite soluble group-has been expanded. We thank Ju. M. Gorcakov, V. A. Curkin and V. P. Sunkov for many useful remarks. The Authors Novosibirsk, Akademgorodok, January 14, 1976. v Preface to the First Edition This book consists of notes from lectures given by the authors at Novosi­ birsk University from 1968 to 1970. Our intention was to set forth just the fundamentals of group theory, avoiding excessive detail and skirting the quagmire of generalizations (however a few generalizations are nonetheless considered-see the last sections of Chapters 6 and 7). We hope that the student desiring to work in the theory of groups, having become acquainted with its fundamentals from these notes, will quickly be able to proceed to the specialist literature on his chosen topic. We have striven not to cross the boundary between abstract and scholastic group theory, elucidating difficult concepts by means of simple examples wherever possible. Four types of examples accompany the numbers under addition, numbers under multiplication, permutations, and matrices.
Graph Theory book cover
#63

Graph Theory

An Introductory Course

1994

From the "Béla Bollobás introductory course on graph theory deserves to be considered as a watershed in the development of this theory as a serious academic subject. ... The book has chapters on electrical networks, flows, connectivity and matchings, extremal problems, colouring, Ramsey theory, random graphs, and graphs and groups. Each chapter starts at a measured and gentle pace. Classical results are proved and new insight is provided, with the examples at the end of each chapter fully supplementing the text... Even so this allows an introduction not only to some of the deeper results but, more vitally, provides outlines of, and firm insights into, their proofs. Thus in an elementary text book, we gain an overall understanding of well-known standard results, and yet at the same time constant hints of, and guidelines into, the higher levels of the subject. It is this aspect of the book which should guarantee it a permanent place in the literature." #Bulletin of the London Mathematical Society#1
Differential Analysis on Complex Manifolds book cover
#65

Differential Analysis on Complex Manifolds

1980

In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds Griffiths' period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems.The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of the developments in the field during the decades since the book appeared.
Introduction to Affine Group Schemes book cover
#66

Introduction to Affine Group Schemes

1979

Ah Love! Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con­ struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme.
Local Fields book cover
#67

Local Fields

1980

The goal of this book is to present local class field theory from the cohomo­ logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary the first two on the general theory of local fields, the third on group coho­ mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.
Linear Operators in Hilbert Spaces book cover
#68

Linear Operators in Hilbert Spaces

1980

This English edition is almost identical to the German original Lineare Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applica tions of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators."
Cyclotomic Fields II book cover
#69

Cyclotomic Fields II

1980

Book by Lang, Serge
Singular Homology Theory book cover
#70

Singular Homology Theory

1980

This textbook on homology and cohomology theory is geared towards the beginning graduate student. Singular homology theory is developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. Wherever possible, the geometric motivation behind various algebraic concepts is emphasized. The only formal prerequisites are knowledge of the basic facts of abelian groups and point set topology. Singular Homology Theory is a continuation of the author's earlier book, Algebraic Topology: An Introduction which presents such important supplementary material as the theory of the fundamental group and a thorough discussion of 2-dimensional manifolds. However, this earlier book is not a prerequisite to understanding Singular Homology Theory.
Riemann Surfaces book cover
#71

Riemann Surfaces

1980

This text covers Riemann surface theory from elementary aspects to the fontiers of current research. Open and closed surfaces are treated with emphasis on the compact case, while basic tools are developed to describe the analytic, geometric, and algebraic properties of Riemann surfaces and the associated Abelian varities. Topics covered include existence of meromorphic functions, the Riemann-Roch theorem, Abel's theorem, the Jacobi inversion problem, Noether's theorem, and the Riemann vanishing theorem. A complete treatment of the uniformization of Riemann sufaces via Fuchsian groups, including branched coverings, is presented, as are alternate proofs for the most important results, showing the diversity of approaches to the subject. Of interest not only to pure mathematicians, but also to physicists interested in string theory and related topics.
Classical Topology and Combinatorial Group Theory book cover
#72

Classical Topology and Combinatorial Group Theory

1980

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec­ tions to other parts of mathematics which make topology an important as well as a beautiful subject.
Algebra book cover
#73

Algebra

1980

Finally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
Multiplicative Number Theory book cover
#74

Multiplicative Number Theory

1980

The new edition of this thorough examination of the distribution of prime numbers in arithmetic progressions offers many revisions and corrections as well as a new section recounting recent works in the field. The book covers many classical results, including the Dirichlet theorem on the existence of prime numbers in arithmetical progressions and the theorem of Siegel. It also presents a simplified, improved version of the large sieve method.
Algebraic Geometry book cover
#76

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

1981

The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties. This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem. The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of D-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed. I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam­ bridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.
Lectures on the Theory of Algebraic Numbers book cover
#77

Lectures on the Theory of Algebraic Numbers

1981

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L­ series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre­ serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g., "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
A Course in Universal Algebra book cover
#78

A Course in Universal Algebra

1981

Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni­ versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character­ ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.
An Introduction to Ergodic Theory book cover
#79

An Introduction to Ergodic Theory

1981

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.
A Course in the Theory of Groups (Graduate Texts in Mathematics, Vol. 80) book cover
#80

A Course in the Theory of Groups (Graduate Texts in Mathematics, Vol. 80)

1993

"An excellent up-to-date introduction to the theory of groups. It is general yet comprehensive, covering various branches of group theory. The 15 chapters contain the following main topics: free groups and presentations, free products, decompositions, Abelian groups, finite permutation groups, representations of groups, finite and infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness properties." ―-ACTA SCIENTIARUM MATHEMATICARUM
Lectures on Riemann Surfaces book cover
#81

Lectures on Riemann Surfaces

1981

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."―-MATHEMATICAL REVIEWS
Differential Forms in Algebraic Topology book cover
#82

Differential Forms in Algebraic Topology

1982

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Introduction to Cyclotomic Fields book cover
#83

Introduction to Cyclotomic Fields

1982

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z\_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
A Classical Introduction to Modern Number Theory book cover
#84

A Classical Introduction to Modern Number Theory

1982

This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
Introduction to Coding Theory book cover
#86

Introduction to Coding Theory

1982

It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4• There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec­ ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section on "Coding Gain" ( the engineer's justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven years of administration. For valuable discussions on the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan for his assistance with Chapter 10.
Cohomology of Groups book cover
#87

Cohomology of Groups

1982

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Associative Algebras book cover
#88

Associative Algebras

1982

Book by Pierce, R.S.
Introduction to Algebraic and Abelian Functions book cover
#89

Introduction to Algebraic and Abelian Functions

1972

Introduction to Algebraic and Abelian Functions is a self-contained presentation of a fundamental subject in algebraic geometry and number theory. For this revised edition, the material on theta functions has been expanded, and the example of the Fermat curves is carried throughout the text. This volume is geared toward a second-year graduate course, but it leads naturally to the study of more advanced books listed in the bibliography.
The Geometry of Discrete Groups book cover
#91

The Geometry of Discrete Groups

1983

This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare \[77\] and Thurston \[101\]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo­ metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana­ tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Sequences and Series in Banach Spaces book cover
#92

Sequences and Series in Banach Spaces

2012

This volume presents answers to some natural questions of a general analytic character that arise in the theory of Banach spaces. I believe that altogether too many of the results presented herein are unknown to the active abstract analysts, and this is not as it should be. Banach space theory has much to offer the prac­ titioners of analysis; unfortunately, some of the general principles that motivate the theory and make accessible many of its stunning achievements are couched in the technical jargon of the area, thereby making it unapproachable to one unwilling to spend considerable time and effort in deciphering the jargon. With this in mind, I have concentrated on presenting what I believe are basic phenomena in Banach spaces that any analyst can appreciate, enjoy, and perhaps even use. The topics covered have at least one serious the beautiful and powerful theory of type and cotype. To be quite frank, I could not say what I wanted to say about this subject without increasing the length of the text by at least 75 percent. Even then, the words would not have done as much good as the advice to seek out the rich Seminaire Maurey-Schwartz lecture notes, wherein the theory's development can be traced from its conception. Again, the treasured volumes of Lindenstrauss and Tzafriri also present much of the theory of type and cotype and are must reading for those really interested in Banach space theory.
Modern Geometry ― Methods and Applications book cover
#93

Modern Geometry ― Methods and Applications

Part I: The Geometry of Surfaces, Transformation Groups, and Fields

1984

This is the first volume of a three-volume introduction to modern geometry which emphasizes applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This new edition offers substantial revisions, and the material is written in concrete language with terminology acceptable to physicists.
Foundations of Differentiable Manifolds and Lie Groups book cover
#94

Foundations of Differentiable Manifolds and Lie Groups

1983

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
Probability (Graduate Texts in Mathematics) book cover
#95

Probability (Graduate Texts in Mathematics)

1980

This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for self-study. This new edition contains substantial revisions and updated references. The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures. Proofs for a number of some important results which were merely stated in the first edition have been added. The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables.
Probability-1 book cover
#95

Probability-1

2011

Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.
Probability book cover
#95

Probability

Vol. 2

2011

Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.
A Course in Functional Analysis book cover
#96

A Course in Functional Analysis

1984

This book is an introductory text in functional analysis, aimed at the graduate student with a firm background in integration and measure theory. Unlike many modern treatments, this book begins with the particular and works its way to the more general. The student will also appreciate the large number of examples and exercises which have been included.
Introduction to Elliptic Curves and Modular Forms book cover
#97

Introduction to Elliptic Curves and Modular Forms

1984

The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.
Representations of Compact Lie Groups book cover
#98

Representations of Compact Lie Groups

1985

This introduction to the representation theory of compact Lie groups follows Herman Weyl’s original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
Finite Reflection Groups book cover
#99

Finite Reflection Groups

1971

Chapter 1 introduces some of the terminology and notation used later and indicates prerequisites. Chapter 2 gives a reasonably thorough account of all finite subgroups of the orthogonal groups in two and three dimensions. The presentation is somewhat less formal than in succeeding chapters. For instance, the existence of the icosahedron is accepted as an empirical fact, and no formal proof of existence is included. Throughout most of Chapter 2 we do not distinguish between groups that are "geo­ metrically indistinguishable," that is, conjugate in the orthogonal group. Very little of the material in Chapter 2 is actually required for the sub­ sequent chapters, but it serves two important It aids in the development of geometrical insight, and it serves as a source of illustrative examples. There is a discussion offundamental regions in Chapter 3. Chapter 4 provides a correspondence between fundamental reflections and funda­ mental regions via a discussion of root systems. The actual classification and construction of finite reflection groups takes place in Chapter 5. where we have in part followed the methods of E. Witt and B. L. van der Waerden. Generators and relations for finite reflection groups are discussed in Chapter 6. There are historical remarks and suggestions for further reading in a Post lude.
Harmonic Analysis on Semigroups book cover
#100

Harmonic Analysis on Semigroups

Theory of Positive Definite and Related Functions

1984

The Fourier transform and the Laplace transform of a positive measure share, together with its moment sequence, a positive definiteness property which under certain regularity assumptions is characteristic for such expressions. This is formulated in exact terms in the famous theorems of Bochner, Bernstein-Widder and Hamburger. All three theorems can be viewed as special cases of a general theorem about functions qJ on abelian semigroups with involution (S, +, \) which are positive definite in the sense that the matrix (qJ(sJ + Sk� is positive definite for all finite choices of elements St, . . ., Sn from S. The three basic results mentioned above correspond to (, +, x\ = -x), (\[0, 00\[, \], x\ = x) and (No, +, n\ = n). The purpose of this book is to provide a treatment of these positive definite functions on abelian semigroups with involution. In doing so we also discuss related topics such as negative definite functions, completely mono- tone functions and Hoeffding-type inequalities. We view these subjects as important ingredients of harmonic analysis on semigroups. It has been our aim, simultaneously, to write a book which can serve as a textbook for an advanced graduate course, because we feel that the notion of positive definiteness is an important and basic notion which occurs in mathematics as often as the notion of a Hilbert space.
Linear Topological Spaces book cover
#101

Linear Topological Spaces

1982

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Lie Groups, Lie Algebras, and Their Representation (Graduate Texts in Mathematics, Vol. 102) book cover
#102

Lie Groups, Lie Algebras, and Their Representation (Graduate Texts in Mathematics, Vol. 102)

1974

This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi­ simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.
Complex Analysis book cover
#103

Complex Analysis

1988

This is a new, revised third edition of Serge Lang's Complex Analysis. The first part of the book covers the basic material of complex analysis, and the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than in other texts, and the proofs using these methods often shed more light on the results than the standard proofs do. The first part of Complex Analysis is suitable for an introductory course on the undergraduate level, and the additional topics covered in the second part give the instructor of a graduate course a great deal of flexibility in structuring a more advanced course.
Modern Geometry― Methods and Applications book cover
#104

Modern Geometry― Methods and Applications

Part II: The Geometry and Topology of Manifolds

1985

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
SL2 book cover
#105

SL2

1985

SL2(R) gives the student an introduction to the infinite dimensional representation theory of semisimple Lie groups by concentrating on one example - SL2(R). This field is of interest not only for its own sake, but for its connections with other areas such as number theory, as brought out, for example, in the work of Langlands. The rapid development of representation theory over the past 40 years has made it increasingly difficult for a student to enter the field. This book makes the theory accessible to a wide audience, its only prerequisites being a knowledge of real analysis, and some differential equations.
The Arithmetic of Elliptic Curves book cover
#106

The Arithmetic of Elliptic Curves

1985

Treats the arithmetic theory of elliptic curves in its modern formulation through the use of basic algebraic number theory and algebraic geometry. This book outlines necessary algebro-geometric results and offers an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, and elliptic curves over finite fields.
Applications of Lie Groups to Differential Equations book cover
#107

Applications of Lie Groups to Differential Equations

1986

Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Holomorphic Functions and Integral Representations in Several Complex Variables (Graduate Texts in Mathematics, Vol. 108) book cover
#108

Holomorphic Functions and Integral Representations in Several Complex Variables (Graduate Texts in Mathematics, Vol. 108)

1986

The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu­ lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ­ ential equations. I believe that this approach offers several (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com­ plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.
Algebraic Number Theory book cover
#110

Algebraic Number Theory

1970

This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms. "Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception."―-MATHEMATICAL REVIEWS
Elliptic Functions (Graduate Texts in Mathematics, Vol. 112) book cover
#112

Elliptic Functions (Graduate Texts in Mathematics, Vol. 112)

1973

Elliptic functions parametrize elliptic curves, and the intermingling of the analytic and algebraic-arithmetic theory has been at the center of mathematics since the early part of the nineteenth century. The book is divided into four parts. In the first, Lang presents the general analytic theory starting from scratch. Most of this can be read by a student with a basic knowledge of complex analysis. The next part treats complex multiplication, including a discussion of Deuring's theory of l-adic and p-adic representations, and elliptic curves with singular invariants. Part three covers curves with non-integral invariants, and applies the Tate parametrization to give Serre's results on division points. The last part covers theta functions and the Kronecker Limit Formula. Also included is an appendix by Tate on algebraic formulas in arbitrary charactistic.
Brownian Motion and Stochastic Calculus book cover
#113

Brownian Motion and Stochastic Calculus

1987

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
A Course in Number Theory and Cryptography book cover
#114

A Course in Number Theory and Cryptography

1899

This item appears new and unused. May have very minor shelving marks on the cover.
Differential Geometry book cover
#115

Differential Geometry

Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces

1987

This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ­ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc­ tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.
Algebraic Groups and Class Fields book cover
#117

Algebraic Groups and Class Fields

1987

Translation of the French Edition
Analysis Now book cover
#118

Analysis Now

1988

Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.
An Introduction to Algebraic Topology book cover
#119

An Introduction to Algebraic Topology

1988

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
Weakly Differentiable Functions book cover
#120

Weakly Differentiable Functions

Sobolev Spaces and Functions of Bounded Variation

1989

The term "weakly differentiable functions" in the title refers to those inte­ n grable functions defined on an open subset of R whose partial derivatives in the sense of distributions are either LP functions or (signed) measures with finite total variation. The former class of functions comprises what is now known as Sobolev spaces, though its origin, traceable to the early 1900s, predates the contributions by Sobolev. Both classes of functions, Sobolev spaces and the space of functions of bounded variation (BV func­ tions), have undergone considerable development during the past 20 years. From this development a rather complete theory has emerged and thus has provided the main impetus for the writing of this book. Since these classes of functions play a significant role in many fields, such as approximation theory, calculus of variations, partial differential equations, and non-linear potential theory, it is hoped that this monograph will be of assistance to a wide range of graduate students and researchers in these and perhaps other related areas. Some of the material in Chapters 1-4 has been presented in a graduate course at Indiana University during the 1987-88 academic year, and I am indebted to the students and colleagues in attendance for their helpful comments and suggestions.
Cyclotomic Fields I and II book cover
#121

Cyclotomic Fields I and II

1989

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek \[Po\], Artin-Hasse \[A-H\] and Vandiver \[Va\]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa \[Iw 11\] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
Numbers book cover
#123

Numbers

1983

This book is about all kinds of numbers, from rationals to octonians, reals to infinitesimals. It is a story about a major thread of mathematics over thousands of years, and it answers everything from why Hamilton was obsessed with quaternions to what the prospect was for quaternionic analysis in the 19 th century. It glimpses the mystery surrounding imaginary numbers in the 17 th century and views some major developments of the 20 th century.
Complex Variables book cover
#125

Complex Variables

An Introduction

1991

Textbooks, even excellent ones, are a reflection of their times. Form and content of books depend on what the students know already, what they are expected to learn, how the subject matter is regarded in relation to other divisions of mathematics, and even how fashionable the subject matter is. It is thus not surprising that we no longer use such masterpieces as Hurwitz and Courant's Funktionentheorie or Jordan's Cours d'Analyse in our courses. The last two decades have seen a significant change in the techniques used in the theory of functions of one complex variable. The important role played by the inhomogeneous Cauchy-Riemann equation in the current research has led to the reunification, at least in their spirit, of complex analysis in one and in several variables. We say reunification since we think that Weierstrass, Poincare, and others (in contrast to many of our students) did not consider them to be entirely separate subjects. Indeed, not only complex analysis in several variables, but also number theory, harmonic analysis, and other branches of mathematics, both pure and applied, have required a reconsidera­ tion of analytic continuation, ordinary differential equations in the complex domain, asymptotic analysis, iteration of holomorphic functions, and many other subjects from the classic theory of functions of one complex variable. This ongoing reconsideration led us to think that a textbook incorporating some of these new perspectives and techniques had to be written.
Linear Algebraic Groups book cover
#126

Linear Algebraic Groups

1991

This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally’s structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.
A Basic Course in Algebraic Topology book cover
#127

A Basic Course in Algebraic Topology

1991

This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.
Partial Differential Equations book cover
#128

Partial Differential Equations

1991

This book is based on a course I have given five times at the University of Michigan, beginning in 1973. The aim is to present an introduction to a sampling of ideas, phenomena, and methods from the subject of partial differential equations that can be presented in one semester and requires no previous knowledge of differential equations. The problems, with hints and discussion, form an important and integral part of the course. In our department, students with a variety of specialties-notably differen­ tial geometry, numerical analysis, mathematical physics, complex analysis, physics, and partial differential equations-have a need for such a course. The goal of a one-term course forces the omission of many topics. Everyone, including me, can find fault with the selections that I have made. One of the things that makes partial differential equations difficult to learn is that it uses a wide variety of tools. In a short course, there is no time for the leisurely development of background material. Consequently, I suppose that the reader is trained in advanced calculus, real analysis, the rudiments of complex analysis, and the language offunctional analysis. Such a background is not unusual for the students mentioned above. Students missing one of the "essentials" can usually catch up simultaneously. A more difficult problem is what to do about the Theory of Distributions.
Representation Theory book cover
#129

Representation Theory

A First Course

1991

The primary goal of these lectures is to introduce a beginner to the finite-dimensional representations of Lie groups and Lie algebras. Intended to serve non-specialists, the concentration of the text is on examples. The general theory is developed sparingly, and then mainly as useful and unifying language to describe phenomena already encountered in concrete cases. The book begins with a brief tour through representation theory of finite groups, with emphasis determined by what is useful for Lie groups. The focus then turns to Lie groups and Lie algebras and finally to the heart of the course: working out the finite dimensional representations of the classical groups. The goal of the last portion of the book is to make a bridge between the example-oriented approach of the earlier parts and the general theory.
Tensor Geometry book cover
#130

Tensor Geometry

The Geometric Viewpoint and its Uses

1977

This treatment of differential geometry and the mathematics required for general relativity makes the subject matter accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. To maintain the flow of exposition and to develop experience in the reader, the technicalities of many proofs are in the form of carefully programmed exercises rather than endless pages of displayed equations. In this way, the reader is guided through actually doing computations instead of being allowed to skim over a page of ready worked examples. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists.
A First Course in Noncommutative Rings book cover
#131

A First Course in Noncommutative Rings

1991

Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
Iteration of Rational Functions book cover
#132

Iteration of Rational Functions

Complex Analytic Dynamical Systems

1990

This book focuses on complex analytic dynamics, which dates from 1916 and is currently attracting considerable interest. The text provides a comprehensive, well-organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The coverage extends from early memoirs of Fatou and Julia to important recent results and methods of Sullivan and Shishikura. Many details of the proofs have not appeared in print before.
Algebraic Geometry book cover
#133

Algebraic Geometry

A First Course

1992

This book is intended to introduce students to algebraic geometry; to give them a sense of the basic objects considered, the questions asked about them, and the sort of answers one can expect to obtain. It thus emphasizes the classical roots of the subject. For readers interested in simply seeing what the subject is about, this book avoids the more technical details better treated with the most recent methods. For readers interested in pursuing the subject further, this book will provide a basis for understanding the developments of the last half century, which have put the subject on a radically new footing. Based on lectures given at Brown and Harvard Universities, this book retains the informal style of the lectures and stresses examples throughout; the theory is developed as needed. The first part is concerned with introducing basic varieties, regular and rational maps, and particular classes of varieties such as determinantal varieties and algebraic groups. The second part discusses attributes of varieties, including dimension, smoothness, tangent spaces and cones, degree, and parameter and moduli spaces.
Coding and Information Theory book cover
#134

Coding and Information Theory

1992

This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.
Advanced Linear Algebra book cover
#135

Advanced Linear Algebra

1995

This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with important applications. For the third edition, the author has added a new chapter on associative algebras that includes the well known characterizations of the finite-dimensional division algebras over the real field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem); polished and refined some arguments (such as the discussion of reflexivity, the rational canonical form, best approximations and the definitions of tensor products); upgraded some proofs that were originally done only for finite-dimensional/rank cases; added new theorems, including the spectral mapping theorem; and considerably expanded the reference section with over a hundred references to books on linear algebra. From the reviews of the second edition: "In this 2nd edition, the author has rewritten the entire book and has added more than 100 pages of new materials. ... As in the previous edition, the text is well written and gives a thorough discussion of many topics of linear algebra and related fields. ... the exercises are rewritten and expanded. ... Overall, I found the book a very useful one. ... It is a suitable choice as a graduate text or as a reference book." - Ali-Akbar Jafarian, ZentralblattMATH "This is a formidable volume, a compendium of linear algebra theory, classical and modern ... . The development of the subject is elegant ... . The proofs are neat ... . The exercise sets are good, with occasional hints given for the solution of trickier problems. ... It represents linear algebra and does so comprehensively." -Henry Ricardo, MathDL
Algebra book cover
#136

Algebra

An Approach via Module Theory

1992

This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its canonical forms for linear transformations, bilinear forms, and group representations. Why modules? The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza­ tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields.
A Course in Computational Algebraic Number Theory book cover
#138

A Course in Computational Algebraic Number Theory

1993

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Topology and Geometry book cover
#139

Topology and Geometry

1993

This book is intended as a textbook for a first-year graduate course on algebraic topology, with a strong flavoring in smooth manifold theory. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. It covers most of the topics all topologists will want students to see, including surfaces, Lie groups, and fibre bundle theory. With a thoroughly modern point of view, it is the first truly new textbook in topology since Spanier, almost 25 years ago. Although the book is comprehensive, there is no attempt made to present the material in excessive generality, except where generality improves the efficiency and clarity of the presentation. —back cover
Optima and Equilibria book cover
#140

Optima and Equilibria

An Introduction to Nonlinear Analysis

1993

Progress in the theory of economic equilibria and in game theory has proceeded hand in hand with that of the mathematical tools used in the field, namely nonlinear analysis and, in particular, convex analysis. Jean-Pierre Aubin, one of the leading specialists in nonlinear analysis and its application to economics, has written a rigorous and concise - yet still elementary and self-contained - textbook providing the mathematical tools needed to study optima and equilibria, as solutions to problems, arising in economics, management sciences, operations research, cooperative and non-cooperative games, fuzzy games etc. It begins with the foundations of optimization theory, and mathematical programming, and in particular convex and nonsmooth analysis. Nonlinear analysis is then presented, first game-theoretically, then in the framework of set valued analysis. These results are then applied to the main classes of economic equilibria. The book contains numerous exercises and the latter allow the reader to venture into areas of nonlinear analysis that lie beyond the scope of the book and of most graduate courses.
Gröbner Bases book cover
#141

Gröbner Bases

A Computational Approach to Commutative Algebra

1993

The origins of the mathematics in this book date back more than two thousand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Euclid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbekistan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and algorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method.
Real and Functional Analysis book cover
#142

Real and Functional Analysis

1983

Real and Functional Analysis is essentially a third edition of Real Analysis, and is designed for a basic graduate course. The book has been reorganized. After a brief introduction to point set topology, some basic theorems on continuous functions, and the introduction of Banach and Hilbert spaces, integration theory is covered systematically so it can fit in a one-semester course. The functional analysis then follows, for a second semester. A number of examples and exercises have been added, as well as some material about integration pertaining specifically to the real line (e.g., Dirac sequence approximation and Fourier analysis in connection with functions of bounded variation and Stieltjes integrals). The functional analysis has been rounded off to include the Gelfand transform on C\*-algebras as well as the basic spectral theorems, for compact operators, bounded hermitian operators, and unbounded self-adjoint operators. A number of topics are included for complementary reading, for instance the law of large numbers and Stokes' theorem on manifolds (even with singularities). The inclusion of such additional material also makes the book useful as a reference source.
Measure Theory book cover
#143

Measure Theory

1993

This text is unique in accepting probability theory as an essential part of measure theory. Therefore, many examples are taken from probability, and probabilistic concepts such as independence and Markov processes are integrated into the text. Also, more attention than usual is paid to the role of algebras, and the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.
Noncommutative Algebra book cover
#144

Noncommutative Algebra

1993

About This Book This book is meant to be used by beginning graduate students. It covers basic material needed by any student of algebra, and is essential to those specializing in ring theory, homological algebra, representation theory and K-theory, among others. It will also be of interest to students of algebraic topology, functional analysis, differential geometry and number theory. Our approach is more homological than ring-theoretic, as this leads the to many important areas of mathematics. This ap­ student more quickly proach is also, we believe, cleaner and easier to understand. However, the more classical, ring-theoretic approach, as well as modern extensions, are also presented via several exercises and sections in Chapter Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one's understanding.
Homology Theory book cover
#145

Homology Theory

An Introduction to Algebraic Topology

1973

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Algebraic K-Theory and Its Applications book cover
#147

Algebraic K-Theory and Its Applications

1994

Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.
An Introduction to the Theory of Groups book cover
#148

An Introduction to the Theory of Groups

1984

Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. The first six chapters provide material for a first course, while the rest of the book covers more advanced topics. This revised edition retains the clarity of presentation that was the hallmark of the previous editions. From the "Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route." —MATHEMATICAL REVIEWS
Foundations of Hyperbolic Manifolds book cover
#149

Foundations of Hyperbolic Manifolds

1994

This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.
Commutative Algebra book cover
#150

Commutative Algebra

with a View Toward Algebraic Geometry

1995

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Advanced Topics in the Arithmetic of Elliptic Curves book cover
#151

Advanced Topics in the Arithmetic of Elliptic Curves

1994

In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Lectures on Polytopes book cover
#152

Lectures on Polytopes

1995

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Algebraic Topology book cover
#153

Algebraic Topology

A First Course

1995

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re­ lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ­ ential topology, etc.), we concentrate our attention on concrete prob­ lems in low dimensions, introducing only as much algebraic machin­ ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol­ ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel­ opment of the subject. What would we like a student to know after a first course in to­ pology (assuming we reject the half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which under­ standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind­ ing numbers and degrees of mappings, fixed-point theorems; appli­ cations such as the Jordan curve theorem, invariance of domain; in­ dices of vector fields and Euler characteristics; fundamental groups
An Introduction to Analysis book cover
#154

An Introduction to Analysis

1994

As its title indicates, this book is intended to serve as a textbook for an introductory course in mathematical analysis. In preliminary form the book has been used in this way at the University of Michigan, Indiana University, and Texas A&M University, and has proved serviceable. In addition to its primary purpose as a textbook for a formal course, however, it is the authors' hope that this book will also prove of value to readers interested in studying mathematical analysis on their own. Indeed, we believe the wealth and variety of examples and exercises will be especially conducive to this end. A word on prerequisites. With what mathematical background might a prospective reader hope to profit from the study of this book? Our con­ scious intent in writing it was to address the needs of a beginning graduate student in mathematics, or, to put matters slightly differently, a student who has completed an undergraduate program with a mathematics ma­ jor. On the other hand, the book is very largely self-contained and should therefore be accessible to a lower classman whose interest in mathematical analysis has already been awakened.
Quantum Groups book cover
#155

Quantum Groups

1994

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Classical Descriptive Set Theory book cover
#156

Classical Descriptive Set Theory

1995

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.
Integration and Probability book cover
#157

Integration and Probability

1995

An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.
Field Theory book cover
#158

Field Theory

1994

This book presents the basic theory of fields, starting more or less from the beginning. It is suitable for a graduate course in field theory, or independent study. The reader is expected to have taken an undergraduate course in abstract algebra, not so much for the material it contains but in order to gain a certain level of mathematical maturity. For this new edition, the author has rewritten the text based on his experiences teaching from the first edition. There are new exercises, a new chapter on Galois theory from an historical perspective, and additional topics sprinkled throughout the text, including a proof of the Fundamental Theorem of Algebra, a discussion of casus irreducibilis, Berlekamp's algorithm for factoring polynomials over Zp and natural and accessory irrationalities.
Functions of One Complex Variable II (Graduate Texts in Mathematics, Vol. 159) book cover
#159

Functions of One Complex Variable II (Graduate Texts in Mathematics, Vol. 159)

1995

This book discusses a variety of problems which are usually treated in a second course on the theory of functions of one complex variable, the level being gauged for graduate students. It treats several topics in geometric function theory as well as potential theory in the plane, covering in particular: conformal equivalence for simply connected regions, conformal equivalence for finitely connected regions, analytic covering maps, de Branges' proof of the Bieberbach conjecture, harmonic functions, Hardy spaces on the disk, potential theory in the plane. A knowledge of integration theory and functional analysis is assumed.
Differential and Riemannian Manifolds book cover
#160

Differential and Riemannian Manifolds

1995

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
Polynomials and Polynomial Inequalities book cover
#161

Polynomials and Polynomial Inequalities

1995

After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality round off the text. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis.
Groups and Representations book cover
#162

Groups and Representations

1995

A concise treatment of topics from group theory and representation theory for use in a one-term course. Focussing on the non-commutative side of the field, this advanced textbook emphasizes the general linear group as the most important group and example. Readers are expected to be familiar with groups, rings, and fields, and to have a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to introduce the reader to additional topics.
Additive Number Theory The Classical Bases book cover
#164

Additive Number Theory The Classical Bases

1996

\[Hilbert's\] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl \[143\] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.
Differential Geometry book cover
#166

Differential Geometry

Cartan's Generalization of Klein's Erlangen Program (Graduate Texts in Mathematics, Vol. 166)

1997

Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.
Field and Galois Theory book cover
#167

Field and Galois Theory

1996

In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.
Combinatorial Convexity and Algebraic Geometry book cover
#168

Combinatorial Convexity and Algebraic Geometry

1996

The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.
Matrix Analysis book cover
#169

Matrix Analysis

1996

The aim of this book is to present a substantial part of matrix analysis that is functional analytic in spirit. Much of this will be of interest to graduate students and research workers in operator theory, operator algebras, mathematical physics, and numerical analysis. The book can be used as a basic text for graduate courses on advanced linear algebra and matrix analysis. It can also be used as supplementary text for courses in operator theory and numerical analysis. Among topics covered are the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, perturbation of matrix functions and matrix inequalities. Much of this is presented for the first time in a unified way in a textbook. The reader will learn several powerful methods and techniques of wide applicability, and see connections with other areas of mathematics. A large selection of matrix inequalities will make this book a valuable reference for students and researchers who are working in numerical analysis, mathematical physics and operator theory.
Sheaf Theory book cover
#170

Sheaf Theory

1967

Primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems", the parts of sheaf theory covered here are those areas important to algebraic topology. Among the many innovations in this book, the concept of the "tautness" of a subspace is introduced and exploited; the fact that sheaf theoretic cohomology satisfies the homotopy property is proved for general topological spaces; and relative cohomology is introduced into sheaf theory. A list of exercises at the end of each chapter helps students to learn the material, and solutions to many of the exercises are given in an appendix. This new edition of a classic has been substantially rewritten and now includes some 80 additional examples and further explanatory material, as well as new sections on Cech cohomology, the Oliver transfer, intersection theory, generalised manifolds, locally homogeneous spaces, homological fibrations and p- adic transformation groups. Readers should have a thorough background in elementary homological algebra and in algebraic topology.
Riemannian Geometry book cover
#171

Riemannian Geometry

1997

This volume introduces techniques and theorems of Riemannian geometry, and opens the way to advanced topics. The text combines the geometric parts of Riemannian geometry with analytic aspects of the theory, and reviews recent research. The updated second edition includes a new coordinate-free formula that is easily remembered (the Koszul formula in disguise); an expanded number of coordinate calculations of connection and curvature; general fomulas for curvature on Lie Groups and submersions; variational calculus integrated into the text, allowing for an early treatment of the Sphere theorem using a forgotten proof by Berger; recent results regarding manifolds with positive curvature.
Classical Topics in Complex Function Theory book cover
#172

Classical Topics in Complex Function Theory

1997

An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
Graph Theory book cover
#173

Graph Theory

1996

Book by Diestel, Reinhard
Foundations of Real and Abstract Analysis book cover
#174

Foundations of Real and Abstract Analysis

1997

A complete course on metric, normed, and Hilbert spaces, including many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format, including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. The book begins with a fast-paced course on real analysis, followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as a preparation for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and unusual applications. Of special interest are the 750 exercises, many with guidelines for their solutions, applications and extensions of the main propositions and theorems, pointers to new branches of the subject, and difficult challenges for the very best students.
An Introduction to Knot Theory book cover
#175

An Introduction to Knot Theory

1997

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
Riemannian Manifolds book cover
#176

Riemannian Manifolds

An Introduction to Curvature

1997

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Analytic Number Theory book cover
#177

Analytic Number Theory

1997

Some of the central topics in number theory, presnted in a simple and concise fashion. The author covers an amazing amount of material, despite a leisurely pace and emphasis on readability. His heartfelt enthusiasm enables readers to see what is magical about the subject. All the topics are presented in a refreshingly elegant and efficient manner with clever examples and interesting problems throughout. The text is suitable for a graduate course in analytic number theory.
Nonsmooth Analysis and Control Theory book cover
#178

Nonsmooth Analysis and Control Theory

1997

A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
Banach Algebra Techniques in Operator Theory book cover
#179

Banach Algebra Techniques in Operator Theory

1972

A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.
A Course on Borel Sets (Graduate Texts in Mathematics, Vol. 180) book cover
#180

A Course on Borel Sets (Graduate Texts in Mathematics, Vol. 180)

1998

A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
Numerical Analysis book cover
#181

Numerical Analysis

1998

An introduction into numerical analysis for students in mathematics, physics, and engineering. Instead of attempting to exhaustively cover everything, the goal is to guide readers towards the basic ideas and general principles by way of the main and important numerical methods. The book includes the necessary basic functional analytic tools for the solid mathematical foundation of numerical analysis—indispensable for any deeper study and understanding of numerical methods, in particular, for differential equations and integral equations. The text is presented in a concise and easily understandable fashion so as to be successfully mastered in a one-year course.
Ordinary Differential Equations book cover
#182

Ordinary Differential Equations

1998

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.
An Introduction to Banach Space Theory book cover
#183

An Introduction to Banach Space Theory

1998

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
Modern Graph Theory book cover
#184

Modern Graph Theory

1998

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out although some are straightforward, most are substantial, and some will stretch even the most able reader.
Using Algebraic Geometry book cover
#185

Using Algebraic Geometry

1998

The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.
Fourier Analysis on Number Fields book cover
#186

Fourier Analysis on Number Fields

1998

A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries—technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Moduli of Curves book cover
#187

Moduli of Curves

1998

A guide to a rich and fascinating algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.
Lectures on the Hyperreals book cover
#188

Lectures on the Hyperreals

An Introduction to Nonstandard Analysis

1998

This is an introduction to nonstandard analysis based on a course of lectures given several times by the author. It is suitable for use as a text at the beginning graduate or upper undergraduate level, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers but as a radically different way of viewing many standard mathematical concepts and constructions; a source of new ideas, objects and proofs; and a wellspring of powerful new principles of reasoning (transfer, overflow, saturation, enlargement, hyperfinite approximation, etc.). The book begins with the ultrapower construction of hyperreal number systems and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective, emphasizing the role of the transfer principle as a working tool of mathematical practice. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line, Ramsey's theorem, nonstandard constructions of p-adic numbers and power series, and nonstandard proofs of the Stone representation theorem for Boolean algebras and the Hahn-Banach theorem. Features of the text include an early introduction of the ideas of internal, external, and hyperfinite sets, and a set-theoretic approach to enlargements more axiomatic than the usual one based on superstructures.
Problems in Algebraic Number Theory book cover
#190

Problems in Algebraic Number Theory

1998

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
Fundamentals of Differential Geometry book cover
#191

Fundamentals of Differential Geometry

1998

This text provides an introduction to basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas: for instance, the existence, uniqueness, and smoothness theorems for differential equations and the flow of a vector field; the basic theory of vector bundles including the existence of tubular neighborhoods for a submanifold; the calculus of differential forms; basic notions of symplectic manifolds, including the canonical 2-form; sprays and covariant derivatives for Riemannian and pseudo-Riemannian manifolds; and applications to the exponential map, including the Cartan-Hadamard theorem and the first basic theorem of calculus of variations. Although the book grew out of the author's earlier book Differential and Riemannian Manifolds, the focus has now changed from the general theory of manifolds to general differential geometry, and includes new chapters on Jacobi lifts, tensorial splitting of the double tangent bundle, curvature and the variation formula, a generalization of the Cartan-Hadamard theorem, the semiparallelogram law of Bruhat-Tits and its equivalence with seminegative curvature and the exponential map distance increasing property, a major example of seminegative curvature (the space of positive definite symmetric real matrices), automorphisms and symmetries, and immersions and submersions. These are all covered for infinite-dimensional manifolds, modeled on Banach and Hilbert spaces, at no cost in complications, and some gain in the elegance of the proofs. In the finite-dimensional case, differential forms of top degree are discussed, leading to Stokes' theorem (even for manifolds with singular boundary), and several of its applications to the differential or Riemannian case. Basic formulas concerning the Laplacian are given, exhibiting several of its features in immersions and submersions.
Elements of Functional Analysis book cover
#192

Elements of Functional Analysis

1999

Book by Hirsch, Francis, Lacombe, Gilles
Advanced Topics in Computational Number Theory book cover
#193

Advanced Topics in Computational Number Theory

1999

Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
One-Parameter Semigroups for Linear Evolution Equations book cover
#194

One-Parameter Semigroups for Linear Evolution Equations

1999

This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
Elementary Methods in Number Theory (Graduate Texts in Mathematics, Vol. 195) book cover
#195

Elementary Methods in Number Theory (Graduate Texts in Mathematics, Vol. 195)

1999

This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
Basic Homological Algebra - A Best Practice Approach to Method Selections, Development and Evaluation book cover
#196

Basic Homological Algebra - A Best Practice Approach to Method Selections, Development and Evaluation

2000

BRAND NEW,EXCELENT AND RELIABLE SERVICE!
The Geometry of Schemes book cover
#197

The Geometry of Schemes

2000

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
A Course in p-adic Analysis book cover
#198

A Course in p-adic Analysis

2000

Discovered at the turn of the 20 th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
Theory of Bergman Spaces book cover
#199

Theory of Bergman Spaces

2000

Fifteen years ago, most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely, yet today the situation has completely changed. For several years, research interest and activity have expanded in this area and there are now rich theories describing the Bergman spaces and their operators. This book is a timely treatment of the theory, written by three of the major players in the field.
An Introduction to Riemann-Finsler Geometry book cover
#200

An Introduction to Riemann-Finsler Geometry

2000

This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic …" EMS Newsletter.
Introduction to Topological Manifolds book cover
#202

Introduction to Topological Manifolds

2000

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
The Symmetric Group book cover
#203

The Symmetric Group

Representations, Combinatorial Algorithms, and Symmetric Functions

1991

This book brings together many of the important results in this field. From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." —ZENTRALBLATT MATH
Rational Homotopy Theory book cover
#205

Rational Homotopy Theory

2000

Rational homotopy theory is a subfield of algebraic topology. It has been an active area for more than 30 years, and no attempt has been made at writing a textbook in more than 15 years. Both notation and techniques of rational homotopy theory have been considerably simplified over the past 15 years, so that the older books in are already out of date. All three authors are considered to be among the leading experts in rational homotopy theory.
Problems in Analytic Number Theory book cover
#206

Problems in Analytic Number Theory

2000

This book gives a problem-solving approach to the difficult subject of analytic number theory. It is primarily aimed at graduate students and senior undergraduates. The goal is to provide a rapid introduction to analytic methods and the ways in which they are used to study the distribution of prime numbers. The book also includes an introduction to p-adic analytic methods. It is ideal for a first course in analytic number theory.
Algebraic Graph Theory book cover
#207

Algebraic Graph Theory

2001

Algebraic graph theory is a combination of two strands. The first is the study of algebraic objects associated with graphs. The second is the use of tools from algebra to derive properties of graphs. The authors' goal has been to present and illustrate the main tools and ideas of algebraic graph theory, with an emphasis on current rather then classical topics. While placing a strong emphasis on concrete examples they tried to keep the treatment self-contained.
Analysis for Applied Mathematics book cover
#208

Analysis for Applied Mathematics

2000

This well-written book contains the analytical tools, concepts, and viewpoints needed for modern applied mathematics. It treats various practical methods for solving problems such as differential equations, boundary value problems, and integral equations. Pragmatic approaches to difficult equations are presented, including the Galerkin method, the method of iteration, Newton’s method, projection techniques, and homotopy methods.
A Short Course on Spectral Theory book cover
#209

A Short Course on Spectral Theory

2001

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C\*-algebras being three areas of current research activity which require mastery of the material presented here.
Number Theory in Function Fields book cover
#210

Number Theory in Function Fields

2002

Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Algebra book cover
#211

Algebra

1965

This book is intended as a basic text for a one year course in algebra at the graduate level or as a useful reference for mathematicians and professionals who use higher-level algebra. This book successfully addresses all of the basic concepts of algebra. For the new edition, the author has added exercises and made numerous corrections to the text. From MathSciNet's review of the first "The author has an impressive knack for presenting the important and interesting ideas of algebra in just the "right" way, and he never gets bogged down in the dry formalism which pervades some parts of algebra."
Lectures on Discrete Geometry book cover
#212

Lectures on Discrete Geometry

2002

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
From Holomorphic Functions to Complex Manifolds book cover
#213

From Holomorphic Functions to Complex Manifolds

2002

This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
Partial Differential Equations book cover
#214

Partial Differential Equations

2002

This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and continuity methods. This book also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. Connections between elliptic parabolic, and hyperbolic equations are explored, as well as the connection with Brownian motion and semigroups. This book can be utilized for a one-year course on partial differential equations. For the new edition the author has added a new chapter on reaction-diffusion equations and systems. There is also new material on Neumann boundary value problems, Poincare inequalities, expansions, as well as a new proof of the Holder regularity of solutions of the Poisson equation. Jurgen Jost is Co-Director of the Max Planck Institute for Mathematics in the Sciences and Professor of Mathematics at the University of Leipzig. He is the author of a number of Springer books, including Dynamical Systems (2005), Postmodern Analysis (3rd ed., 2005, also translated into Japanese), Compact Riemann Surfaces (3rd ed., 2006) and Riemannian Geometry and Geometric Analysis (4th ed., 2005). The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998)
Matrices book cover
#216

Matrices

Theory and Applications

2002

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Model Theory book cover
#217

Model Theory

An Introduction

2002

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Introduction to Smooth Manifolds book cover
#218

Introduction to Smooth Manifolds

2002

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Smooth Manifolds and Observables book cover
#220

Smooth Manifolds and Observables

2002

This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.
Convex Polytopes book cover
#221

Convex Polytopes

2003

"The original edition \[...\] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." —Peter McMullen, University College London
Lie Groups, Lie Algebras, and Representations book cover
#222

Lie Groups, Lie Algebras, and Representations

An Elementary Introduction

2003

Lie groups, Lie algebras, and representation theory are the main focus of this text. In order to keep the prerequisites to a minimum, the author restricts attention to matrix Lie groups and Lie algebras. This approach keeps the discussion concrete, allows the reader to get to the heart of the subject quickly, and covers all of the most interesting examples. The book also introduces the often-intimidating machinery of roots and the Weyl group in a gradual way, using examples and representation theory as motivation. The text is divided into two parts. The first covers Lie groups and Lie algebras and the relationship between them, along with basic representation theory. The second part covers the theory of semisimple Lie groups and Lie algebras, beginning with a detailed analysis of the representations of SU(3). The author illustrates the general theory with numerous images pertaining to Lie algebras of rank two and rank three, including images of root systems, lattices of dominant integral weights, and weight diagrams. This book is sure to become a standard textbook for graduate students in mathematics and physics with little or no prior exposure to Lie theory. Brian Hall is an Associate Professor of Mathematics at the University of Notre Dame.
Fourier Analysis and Its Applications (Graduate Texts in Mathematics, Vol. 223) book cover
#223

Fourier Analysis and Its Applications (Graduate Texts in Mathematics, Vol. 223)

2003

This book presents the basic ideas in Fourier analysis and its applications to the study of partial differential equations. It also covers the Laplace and Zeta transformations and the fundaments of their applications. The author has intended to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesque integral or with analytic functions of a complex variable. At the same time, he has included discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability, and multidimensional Fourier analysis, topics that one usually will not find in books at this level. Many of the chapters end with a summary of their contents, as well as a short historical note. The text contains a a great number of examples, as well as more than 350 exercises. In addition, one of the appendices is a collection of the formulas needed to solve problems in the field. Anders Vretblad is Senior Lecturer of Mathematics at Uppsala University Sweden.
Metric Structures in Differential Geometry book cover
#224

Metric Structures in Differential Geometry

2004

This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.
Lie Groups book cover
#225

Lie Groups

2004

This book proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and offers a carefully chosen range of material designed to give readers the bigger picture. It explores compact Lie groups through a number of proofs and culminates in a "topics" section that takes the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as unifying them.
Spaces of Holomorphic Functions in the Unit Ball (Graduate Texts in Mathematics, Vol. 226) book cover
#226

Spaces of Holomorphic Functions in the Unit Ball (Graduate Texts in Mathematics, Vol. 226)

2005

Can be used as a graduate text Contains many exercises Contains new results

Authors

A.T. Fomenko
A.T. Fomenko
Author · 7 books

Anatoly Timofeevich Fomenko is a full Member (Academician) of the Russian Academy of Sciences, Full Member of the International Higher Education Academy of Sciences,Doctor of Physics and Mathematics, Professor, Head of the Moscow State University Section of Mathematics of the Department of Mathematics and Mechanics.Solved Plateau's Problem from the theory of minimal spectral surfaces. Author of the theory of invariants and topological classification of integrable Hamiltonian dynamic systems. Author of 200 scientific publications, 28 monographs and textbooks on mathematics, a specialist in geometry and topology, calculus of variations, symplectic topology, Hamiltonian geometry and mechanics, computer geometry. Author of a number of books on the development of new empirico-statistical methods and their application to the analysis of historical chronicles as well as the chornology of antiquity and the Middle Ages. Many Russian scientists do not accept the "New Chronology" declaring it pseudoscientific, yet no mathematical calculations on which the New Chronology is based have been proved wrong. The supporters of the New Chronology include Garry Kasparov, a former chess champion, whom many consider the greatest chess player of all time.

V.S. Varadarajan
Author · 2 books
Veeravalli Seshadri Varadarajan
John B. Conway
Author · 3 books
John B. Conway is a Professor of Mathematics at George Washington University.
Edwin Moise
Author · 3 books
Professor Edwin Evariste Moise Sr.(not to be confused with his son, Edwin E. Moïse, Professor of History at Clemson University) was an American mathematician, mathematics educator and textbook author.
Ezra Miller
Ezra Miller
Author · 1 books
Ezra Matthew Miller is an American actor, known for his roles in the films City Island (2009), Another Happy Day (2011), and We Need to Talk About Kevin (2011). He starred in the 2012 teen drama The Perks of Being a Wallflower, with Logan Lerman and Emma Watson, and has signed on to play the role of Léon Dupuis in Sophie Barthes' adaptation of the Gustave Flaubert novel Madame Bovary.
Lawrence C. Washington
Author · 2 books

Lawrence Clinton Washington (born 1951, Vermont) is an American mathematician, who specializes in number theory. Washington studied at Johns Hopkins University, where in 1971 he received his B.A. and masters degree. In 1974 he earned his PhD at Princeton University under Kenkichi Iwasawa with thesis Class numbers and Z_p extensions.[1] He then became an assistant professor at Stanford University and from 1977 at the University of Maryland, where he became in 1981 an associate professor and in 1986 a professor. He held visiting positions at several institutions, including IHES (1980/81), Max-Planck-Institut für Mathematik (1984), the Institute for Advanced Study (1996), and MSRI (1986/87), as well as at the University of Perugia, Nankai University and the State University of Campinas. Washington wrote a standard work on cyclotomic fields. He also worked on p-adic L-functions. He wrote a treatise with Allan Adler on their discovery of a connection between higher-dimensional analogues of magic squares and p-adic L-functions.[2] Washington has done important work on Iwasawa theory, Cohen-Lenstra heuristics, and elliptic curves and their applications to cryptography. In Iwasawa theory he proved with Bruce Ferrero in 1979 a conjecture of Kenkichi Iwasawa, that the \mu-invariant vanishes for cyclotomic Zp-extensions of abelian number fields (Theorem of Ferrero-Washington).[3] In 1979–1981 he was a Sloan Fellow. (from Wikipedia)

R. Keith Dennis
Author · 1 books
Roger Keith Dennis, known as R. Keith or Keith, was an American mathematician who worked in algebraic K-theory and group theory. His career was spent as a professor in the Department of Mathematics at Cornell University. Dennis was the executive editor of Mathematical Reviews as it transitioned from a printed resource to a mainly-digital one.
Jean-Pierre Serre
Jean-Pierre Serre
Author · 5 books

Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the historian and writer Claudine Monteil. From a very young age he was an outstanding figure in the school of Henri Cartan, working on algebraic topology, several complex variables and then commutative algebra and algebraic geometry, where he introduced sheaf theory and homological algebra techniques. Serre's thesis concerned the Leray–Serre spectral sequence associated to a fibration. Together with Cartan, Serre established the technique of using Eilenberg–MacLane spaces for computing homotopy groups of spheres, which at that time was one of the major problems in topology. In his speech at the Fields Medal award ceremony in 1954, Hermann Weyl gave high praise to Serre, and also made the point that the award was for the first time awarded to an algebraist. Serre subsequently changed his research focus. However, Weyl's perception that the central place of classical analysis had been challenged by abstract algebra has subsequently been justified, as has his assessment of Serre's place in this change. In the 1950s and 1960s, a fruitful collaboration between Serre and the two-years-younger Alexander Grothendieck led to important foundational work, much of it motivated by the Weil conjectures. Two major foundational papers by Serre were Faisceaux Algébriques Cohérents (FAC), on coherent cohomology, and Géometrie Algébrique et Géométrie Analytique (GAGA). In his paper FAC, Serre asked whether a finitely generated projective module over a polynomial ring is free. This question led to a great deal of activity in commutative algebra, and was finally answered in the affirmative by Daniel Quillen and Andrei Suslin independently in 1976. This result is now known as the Quillen-Suslin theorem. Even at an early stage in his work Serre had perceived a need to construct more general and refined cohomology theories to tackle the Weil conjectures. The problem was that the cohomology of a coherent sheaf over a finite field couldn't capture as much topology as singular cohomology with integer coefficients. Amongst Serre's early candidate theories of 1954–55 was one based on Witt vector coefficients. Around 1958 Serre suggested that isotrivial principal bundles on algebraic varieties—those that become trivial after pullback by a finite étale map—are important. This acted as one important source of inspiration for Grothendieck to develop étale topology and the corresponding theory of étale cohomology. These tools, developed in full by Grothendieck and collaborators in Séminaire de géométrie algébrique (SGA) 4 and SGA 5, provided the tools for the eventual proof of the Weil conjectures. From 1959 onward Serre's interests turned towards group theory, number theory, in particular Galois representations and modular forms. Amongst his most original contributions were: his "Conjecture II" (still open) on Galois cohomology; his use of group actions on Trees (with H. Bass); the Borel-Serre compactification; results on the number of points of curves over finite fields; Galois representations in ℓ-adic cohomology and the proof that these representations have often a "large" image; the concept of p-adic modular form; and the Serre conjecture (now a theorem) on mod-p representations that made Fermat's last theorem a connected part of mainstream arithmetic geometry. Serre, at twenty-seven in 1954, is the youngest ever to be awarded

Serge Lang
Author · 21 books

Serge Lang was an influential mathematician in the field of number theory. Algebra is his most famous book. Librarian Note: There is more than one author in the GoodReads database with this name. See this thread for more information.

David A. Cox
Author · 4 books

David Archibald Cox (born September 23, 1948 in Washington, D.C.) is an American mathematician, working in algebraic geometry. Cox graduated from Rice University with a Bachelor's degree in 1970 and his Ph.D. in 1975 at Princeton University, under the supervision of Eric Friedlander (Tubular Neighborhoods in the Etale Topology). From 1974 to 1975, he was assistant professor at Haverford College and at Rutgers University from 1975 to 1979. In 1979, he became assistant professor and in 1988 professor at Amherst College. He studies, among other things, étale homotopy theory, elliptic surfaces, computer-based algebraic geometry (such as Gröbner basis), Torelli sets and toric varieties, and history of mathematics. He is also known for several textbooks. He is a fellow of the American Mathematical Society. From 1987 to 1988 he was a guest professor at Oklahoma State University. In 2012, he received the Lester Randolph Ford Award for Why Eisenstein Proved the Eisenstein Criterion and Why Schönemann Discovered It First.

Jürgen Jost
Author · 2 books
Jürgen Jost is a German mathematician. He has been a director of the Max Planck Institute for Mathematics in the Sciences in Leipzig since 1996.
John M. Lee
John M. Lee
Author · 3 books
John M. (Jack) Lee is Professor Emeritus of Mathematics at the University of Washington.
548 Market St PMB 65688, San Francisco California 94104-5401 USA
© 2025 Paratext Inc. All rights reserved