
1993
First Published
4.00
Average Rating
206
Number of Pages
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Avg Rating
4.00
Number of Ratings
15
5 STARS
27%
4 STARS
53%
3 STARS
13%
2 STARS
7%
1 STARS
0%
goodreads
Author

Keith Devlin
Author · 17 books
Dr. Keith Devlin is a co-founder and Executive Director of the university's H-STAR institute, a Consulting Professor in the Department of Mathematics, a co-founder of the Stanford Media X research network, and a Senior Researcher at CSLI. He is a World Economic Forum Fellow and a Fellow of the American Association for the Advancement of Science. His current research is focused on the use of different media to teach and communicate mathematics to diverse audiences. He also works on the design of information/reasoning systems for intelligence analysis. Other research interests include: theory of information, models of reasoning, applications of mathematical techniques in the study of communication, and mathematical cognition. He has written 26 books and over 80 published research articles. Recipient of the Pythagoras Prize, the Peano Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is "the Math Guy" on National Public Radio.