
Basic Category Theory
By Tom Leinster
2014
First Published
4.43
Average Rating
190
Number of Pages
Part of Series
At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.
Avg Rating
4.43
Number of Ratings
37
5 STARS
51%
4 STARS
41%
3 STARS
8%
2 STARS
0%
1 STARS
0%
goodreads