Margins
Cambridge Studies in Advanced Mathematics book cover 1
Cambridge Studies in Advanced Mathematics book cover 2
Cambridge Studies in Advanced Mathematics book cover 3
Cambridge Studies in Advanced Mathematics
Series · 143
books · 1982-2020

Books in series

Ergodic Theory book cover
#2

Ergodic Theory

1983

The author presents the fundamentals of the ergodic theory of point transformations and several advanced topics of intense research. The study of dynamical systems forms a vast and rapidly developing field even when considering only activity whose methods derive mainly from measure theory and functional analysis. Each of the basic aspects of ergodic theory—examples, convergence theorems, recurrence properties, and entropy—receives a basic and a specialized treatment. The author's accessible style and the profusion of exercises, references, summaries, and historical remarks make this a useful book for graduate students or self study.
Stone Spaces book cover
#3

Stone Spaces

1982

Over the last 45 years, Boolean theorem has been generalized and extended in several different directions and its applications have reached into almost every area of modern mathematics; but since it lies on the frontiers of algebra, geometry, general topology and functional analysis, the corpus of mathematics which has arisen in this way is seldom seen as a whole. In order to give a unified treatment of this rather diverse body of material, Dr Johnstone begins by developing the theory of locales (a lattice-theoretic approach to 'general topology without points' which has achieved some notable results in the past ten years but which has not previously been treated in book form). This development culminates in the proof of Stone's Representation Theorem.
Introduction to the Construction of Class Fields book cover
#6

Introduction to the Construction of Class Fields

1985

A broad introduction to quadratic forms, modular functions, interpretation by rings and ideals, class fields by radicals and more. 1985 ed.
Introduction to Higher-Order Categorical Logic book cover
#7

Introduction to Higher-Order Categorical Logic

1986

In this volume, Lambek and Scott reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher-order logic, and cartesian closed categories, are essentially the same. Part II demonstrates that another formulation of higher-order logic, (intuitionistic) type theories, is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language of category theory are given. The authors have included an introduction to category theory and develop the necessary logic as required, making the book essentially self-contained. Detailed historical references are provided throughout, and each section concludeds with a set of exercises.
Commutative Ring Theory book cover
#8

Commutative Ring Theory

1986

In addition to being an interesting and profound subject in its own right, commutative ring theory is important as a foundation for algebraic geometry and complex analytical geometry. Matsumura covers the basic material, including dimension theory, depth, Cohen-Macaulay rings, Gorenstein rings, Krull rings and valuation rings. More advanced topics such as Ratliff's theorems on chains of prime ideals are also explored. The work is essentially self-contained, the only prerequisite being a sound knowledge of modern algebra, yet the reader is taken to the frontiers of the subject. Exercises are provided at the end of each section and solutions or hints to some of them are given at the end of the book.
Characteristic Classes and the Cohomology of Finite Groups book cover
#9

Characteristic Classes and the Cohomology of Finite Groups

2008

The purpose of this book is to study the relation between the representation ring of a finite group and its integral cohomology by means of characteristic classes. In this way it is possible to extend the known calculations and prove some general results for the integral cohomology ring of a group G of prime power order. Among the groups considered are those of p-rank less than 3, extra-special p-groups, symmetric groups and linear groups over finite fields. An important tool is the Riemann - Roch formula which provides a relation between the characteristic classes of an induced representation, the classes of the underlying representation and those of the permutation representation of the infinite symmetric group. Dr Thomas also discusses the implications of his work for some arithmetic groups which will interest algebraic number theorists. Dr Thomas assumes the reader has taken basic courses in algebraic topology, group theory and homological algebra, but has included an appendix in which he gives a purely topological proof of the Riemann - Roch formula.
Finite Group Theory book cover
#10

Finite Group Theory

1986

This second edition develops the foundations of finite group theory. For students already exposed to a first course in algebra, it serves as a text for a course on finite groups. For the reader with some mathematical sophistication but limited knowledge of finite group theory, the book supplies the basic background necessary to begin to read journal articles in the field. It also provides the specialist in finite group theory with a reference on the foundations of the subject. Unifying themes include the Classification Theorem and the classical linear groups. Lie theory appears in chapters on Coxeter groups, root systems, buildings, and Tits systems. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.
Local Representation Theory book cover
#11

Local Representation Theory

Modular Representations as an Introduction to the Local Representation Theory of Finite Groups

1986

Representation theory has applications to number theory, combinatorics and many areas of algebra. The aim of this text is to present some of the key results in the representation theory of finite groups. Professor Alperin concentrates on local representation theory, emphasizing module theory throughout. In this way many deep results can be obtained rather quickly. After two introductory chapters, the basic results of Green are proved, which in turn lead in due course to Brauer's First Main Theorem. A proof of the module form of Brauer's Second Main Theorem is then presented, followed by a discussion of Feit's work connecting maps and the Green correspondence. The work concludes with a treatment, new in part, of the Brauer-Dade theory. Exercises are provided at the end of most sections; the results of some are used later in the text.
An Introduction to the Theory of the Riemann Zeta-Function book cover
#14

An Introduction to the Theory of the Riemann Zeta-Function

1995

This is a modern introduction to the analytic techniques used in the investigation of zeta-function. Riemann introduced this function in connection with his study of prime numbers, and from this has developed the subject of analytic number theory. Since then, many other classes of "zeta-function" have been introduced and they are now some of the most intensively studied objects in number theory. Professor Patterson has emphasized central ideas of broad application, avoiding technical results and the customary function-theoretic approach.
Algebraic Homotopy book cover
#15

Algebraic Homotopy

1989

This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.
An Introduction to Harmonic Analysis on Semisimple Lie Groups book cover
#16

An Introduction to Harmonic Analysis on Semisimple Lie Groups

1989

Now in paperback, this graduate-level textbook is an excellent introduction to the representation theory of semi-simple Lie groups. Professor Varadarajan emphasizes the development of central themes in the context of special examples. He begins with an account of compact groups and discusses the Harish-Chandra modules of SL(2,R) and SL(2,C). Subsequent chapters introduce the Plancherel formula and Schwartz spaces, and show how these lead to the Harish-Chandra theory of Eisenstein integrals. The final sections consider the irreducible characters of semi-simple Lie groups, and include explicit calculations of SL(2,R). The book concludes with appendices sketching some basic topics and with a comprehensive guide to further reading. This superb volume is highly suitable for students in algebra and analysis, and for mathematicians requiring a readable account of the topic.
Groups Acting on Graphs book cover
#17

Groups Acting on Graphs

1989

This is an advanced text and research monograph on groups acting on low-dimensional toplogical spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Here the treatment includes several of the standard results on groups acting on trees, as well as many original results on ends of groups and Boolean rings of graphs. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main Three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts normally found in one-year courses on homological algebra and algebraic topology.
Cellular Structures in Topology book cover
#19

Cellular Structures in Topology

1990

This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.
Representations and Characters of Finite Groups book cover
#22

Representations and Characters of Finite Groups

1990

Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates that requires only a basic knowledge of group theory and general algebra. This theme is then expanded in a self-contained account providing an introduction to the application of character theory to the classification of simple groups. The book follows both strands of the the exceptional characteristics of Suzuki and Feit and the block character theory of Brauer and includes refinements of original proofs that have become available as the subject has grown.
Stochastic Flows and Stochastic Differential Equations book cover
#24

Stochastic Flows and Stochastic Differential Equations

1990

Stochastic analysis and stochastic differential equations are rapidly developing fields in probability theory and its applications. This book provides a systematic treatment of stochastic differential equations and stochastic flow of diffeomorphisms and describes the properties of stochastic flows. Professor Kunita's approach regards the stochastic differential equation as a dynamical system driven by a random vector field, including K. Itô's classical theory. Beginning with a discussion of Markov processes, martingales and Brownian motion, Kunita reviews Itô's stochastic analysis. He places emphasis on establishing that the solution defines a flow of diffeomorphisms. This flow property is basic in the modern and comprehensive analysis of the solution and will be applied to solve the first and second order stochastic partial differential equations. This book will be valued by graduate students and researchers in probability. It can also be used as a textbook for advanced probability courses.
Banach Spaces for Analysts book cover
#25

Banach Spaces for Analysts

1991

This is an introduction to modern Banach space theory, in which applications to other areas such as harmonic analysis, function theory, orthogonal series, and approximation theory are also given prominence. The author begins with a discussion of weak topologies, weak compactness, and isomorphisms of Banach spaces before proceeding to the more detailed study of particular spaces. The book is intended to be used with graduate courses in Banach space theory, so the prerequisites are a background in functional, complex, and real analysis. As the only introduction to the modern theory of Banach spaces, it will be an essential companion for professional mathematicians working in the subject, or to those interested in applying it to other areas of analysis.
Clifford Algebras and Dirac Operators in Harmonic Analysis book cover
#26

Clifford Algebras and Dirac Operators in Harmonic Analysis

1991

The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.
#27

Algebraic Number Theory

1993

This book provides a brisk, thorough treatment of the foundations of algebraic number theory on which it builds to introduce more advanced topics. Throughout, the authors emphasize the systematic development of techniques for the explicit calculation of the basic invariants such as rings of integers, class groups, and units, combining at each stage theory with explicit computations.
Topics in Metric Fixed Point Theory book cover
#28

Topics in Metric Fixed Point Theory

1990

Metric fixed point theory has proved a flourishing area of research for the past twenty-five years. This book offers the mathematical community an accessible, self-contained document that can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including nonspecialists and provides a source for examples, references and new approaches for those currently working in the subject.
Reflection Groups and Coxeter Groups book cover
#29

Reflection Groups and Coxeter Groups

1990

In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature.
Cohomological Methods in Transformation Groups book cover
#32

Cohomological Methods in Transformation Groups

1993

In the large and thriving field of compact transformation groups an important role has long been played by cohomological methods. This book aims to give a contemporary account of such methods, in particular the applications of ordinary cohomology theory and rational homotopy theory with principal emphasis on actions of tori and elementary abelian p-groups on finite-dimensional spaces. For example, spectral sequences are not used in Chapter 1, where the approach is by means of cochain complexes; and much of the basic theory of cochain complexes needed for this chapter is outlined in an appendix. For simplicity, emphasis is put on G-CW-complexes; the refinements needed to treat more general finite-dimensional (or finitistic) G-spaces are often discussed separately. Subsequent chapters give systematic treatments of the Localization Theorem, applications of rational homotopy theory, equivariant Tate cohomology and actions on Poincaré duality spaces. Many shorter and more specialized topics are included also. Chapter 2 contains a summary of the main definitions and results from Sullivan's version of rational homotopy theory which are used in the book.
Lectures on Arakelov Geometry book cover
#33

Lectures on Arakelov Geometry

1992

Arakelov theory is a new geometric approach to diophantine equations. It combines algebraic geometry, in the sense of Grothendieck, with refined analytic tools such as currents on complex manifolds and the spectrum of Laplace operators. It has been used by Faltings and Vojta in their proofs of outstanding conjectures in diophantine geometry. This account presents the work of Gillet and Soulé, extending Arakelov geometry to higher dimensions. It includes a proof of Serre's conjecture on intersection multiplicities and an arithmetic Riemann-Roch theorem. To aid number theorists, background material on differential geometry is described, but techniques from algebra and analysis are covered as well. Several open problems and research themes are also mentioned.
A Primer of Nonlinear Analysis book cover
#34

A Primer of Nonlinear Analysis

1993

This is an introduction to nonlinear functional analysis, in particular to those methods based on differential calculus in Banach spaces. It is in two parts; the first deals with the geometry of Banach spaces and includes a discussion of local and global inversion theorems for differential mappings. In the second part, the authors are more concerned with bifurcation theory, including the Hopf bifurcation. They include plenty of motivational and illustrative applications, which indeed provide much of the justification of nonlinear analysis. In particular, they discuss bifurcation problems arising from such areas as mechanics and fluid dynamics.
Representation Theory of Artin Algebras book cover
#36

Representation Theory of Artin Algebras

1995

This book serves as a comprehensive introduction to the representation theory of Artin algebras, a branch of algebra. Written by three distinguished mathematicians, it illustrates how the theory of almost split sequences is utilized within representation theory. The authors develop several foundational aspects of the subject. For example, the representations of quivers with relations and their interpretation as modules over the factors of path algebras is discussed in detail. Thorough discussions yield concrete illustrations of some of the more abstract concepts and theorems. The book includes complete proofs of all theorems and numerous exercises. It is an invaluable resource for graduate students and researchers.
Wavelets and Operators book cover
#37

Wavelets and Operators

1993

Over the last two years, wavelet methods have shown themselves to be of considerable use to harmonic analysts and, in particular, advances have been made concerning their applications. The strength of wavelet methods lies in their ability to describe local phenomena more accurately than a traditional expansion in sines and cosines can. Thus, wavelets are ideal in many fields where an approach to transient behaviour is needed, for example, in considering acoustic or seismic signals, or in image processing. Yves Meyer stands the theory of wavelets firmly upon solid ground by basing his book on the fundamental work of Calderón, Zygmund and their collaborators. For anyone who would like an introduction to wavelets, this book will prove to be a necessary purchase.
An Introduction to Homological Algebra book cover
#38

An Introduction to Homological Algebra

1994

The landscape of homological algebra has evolved over the past half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras is also described. The first half of the book takes as its subject the canonical topics in homological derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors.
Cohen-Macaulay Rings book cover
#39

Cohen-Macaulay Rings

1993

In the past two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the subject. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. The general theory is applied to a number of examples and the connections with combinatorics are highlighted. Throughout each chapter, the authors have supplied many examples and exercises.
Explicit Brauer Induction book cover
#40

Explicit Brauer Induction

With Applications to Algebra and Number Theory

1994

Explicit Brauer Induction is a new and important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this book it is derived algebraically, following a method of R. Boltje—thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to reprove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver-Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings.
Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis book cover
#41

Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis

1995

Cohomology of Drinfeld Modular Varieties aims to provide an introduction to both the subject of the title and the Langlands correspondence for function fields. These varieties are the analogs for function fields of Shimura varieties over number fields. This present volume is devoted to the geometry of these varieties and to the local harmonic analysis needed to compute their cohomology. To keep the presentation as accessible as possible, the author considers the simpler case of function rather than number fields; nevertheless, many important features can still be illustrated. It will be welcomed by workers in number theory and representation theory.
Spectral Theory and Differential Operators book cover
#42

Spectral Theory and Differential Operators

1995

In this book, Davies introduces the reader to the theory of partial differential operators, up to the spectral theorem for bounded linear operators on Banach spaces. He also describes the theory of Fourier transforms and distributions as far as is needed to analyze the spectrum of any constant coefficient partial differential operator. He also presents a completely new proof of the spectral theorem for unbounded self-adjoint operators and demonstrates its application to a variety of second order elliptic differential operators. Finally, the book contains a detailed account of the application of variational methods to estimate the eigenvalues of operators with measurable coefficients defined by the use of quadratic form techniques. Illustrated with many examples, it is well-suited to graduate-level work.
Absolutely Summing Operators book cover
#43

Absolutely Summing Operators

1995

We can best understand many fundamental processes in analysis by studying and comparing the summability of series in various modes of convergence. This text provides the reader with basic knowledge of real and functional analysis, with an account of p-summing and related operators. The account is panoramic, with detailed expositions of the core results and highly relevant applications to harmonic analysis, probability and measure theory, and operator theory. This is the first time that the subject and its applications have been presented in such complete detail in book form. Graduate students and researchers in real, complex and functional analysis, and probability theory will benefit from this text.
Geometry of Sets and Measures in Euclidean Spaces book cover
#44

Geometry of Sets and Measures in Euclidean Spaces

Fractals and Rectifiability

1995

The focus of this book is geometric properties of general sets and measures in Euclidean spaces. Applications of this theory include fractal-type objects, such as strange attractors for dynamical systems, and those fractals used as models in the sciences. The author provides a firm and unified foundation for the subject and develops all the main tools used in its study, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Besicovitch-Federer theory of rectifiable sets, which form in a sense the largest class of subsets of Euclidean space possessing many of the properties of smooth surfaces.
Positive Harmonic Functions and Diffusion (Cambridge Studies in Advanced Mathematics) by Ross G. Pinsky book cover
#45

Positive Harmonic Functions and Diffusion (Cambridge Studies in Advanced Mathematics) by Ross G. Pinsky

1995

In this book, Professor Pinsky gives a self-contained account of the construction and basic properties of diffusion processes, including both analytic and probabilistic techniques. He starts with a rigorous treatment of the spectral theory of elliptic operators with nice coefficients on smooth, bounded domains, and then develops the theory of the generalized principal eigenvalue and the related criticality theory for elliptic operators on arbitrary domains. He considers Martin boundary theory and calculates the Martin boundary for several classes of operators. The book provides an array of criteria for determining whether a diffusion process is transient or recurrent. Also introduced are the theory of bounded harmonic functions, and Brownian motion on a manifold. Many results that form the folklore of the subject are given a rigorous exposition, making this book a useful reference for the specialist, and an excellent guide for the graduate student.
Introduction to Analytic and Probabilistic Number Theory book cover
#46

Introduction to Analytic and Probabilistic Number Theory

1995

This book is a systematic introduction to analytic methods in number theory, and assumes as a prerequisite only what is taught in a standard undergraduate course. The author aids readers by including a section of bibliographic notes and detailed exercises at the end of each chapter. Tenenbaum has emphasized methods rather than results, so readers should be able to tackle more advanced material than is included here. Moreover, he covers developments on many new and unpublished topics, such as: the Selberg-Delange method; a version of the Ikehara-Ingham Tauberian theorem; and a detailed exposition of the arithmetical use of the saddle-point method.
An Algebraic Introduction to Complex Projective Geometry book cover
#47

An Algebraic Introduction to Complex Projective Geometry

Commutative Algebra

1996

In this introduction to commutative algebra, the author choses a route that leads the reader through the essential ideas, without getting embroiled in technicalities. He takes the reader quickly to the fundamentals of complex projective geometry, requiring only a basic knowledge of linear and multilinear algebra and some elementary group theory. The author divides the book into three parts. In the first, he develops the general theory of noetherian rings and modules. He includes a certain amount of homological algebra, and he emphasizes rings and modules of fractions as preparation for working with sheaves. In the second part, he discusses polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalization lemma and Hilbert's Nullstellensatz, the author introduces affine complex schemes and their morphisms; he then proves Zariski's main theorem and Chevalley's semi-continuity theorem. Finally, the author's detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
Wavelets book cover
#48

Wavelets

Calderón-Zygmund and Multilinear Operators

1997

Now in paperback, this remains one of the classic expositions of the theory of wavelets from two of the subject's leading experts. This volume discusses the theory of paradifferential operators and the Cauchy kernel on Lipschitz curves with the emphasis firmly on their connection with wavelet bases. Sparse matrix representations of these operators can be given in terms of wavelet bases that have important applications in image processing and numerical analysis. This method is now widely studied and can be used to tackle a wide variety of problems arising in science and engineering. Put simply, this is an essential purchase for anyone researching the theory of wavelets.
Cambridge Studies in Advanced Mathematics, Volume 49 book cover
#49

Cambridge Studies in Advanced Mathematics, Volume 49

Enumerative Combinatorics, Volume 1

1986

This book, the first of a two-volume basic introduction to enumerative combinatorics, concentrates on the theory and application of generating functions, a fundamental tool in enumerative combinatorics. Richard Stanley covers those parts of enumerative combinatorics with the greatest applications to other areas of mathematics. The four chapters are devoted to an accessible introduction to enumeration, sieve methods—including the Principle of Inclusion-Exclusion, partially ordered sets, and rational generating functions. A large number of exercises, almost all with solutions, augment the text and provide entry into many areas not covered directly. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.
Clifford Algebras and the Classical Groups book cover
#50

Clifford Algebras and the Classical Groups

1995

This book reflects the growing interest in the theory of Clifford algebras and their applications. The author has reworked his previous book on this subject, Topological Geometry, and has expanded and added material. As in the previous version, the author includes an exhaustive treatment of all the generalizations of the classical groups, as well as an excellent exposition of the classification of the conjugation anti-involution of the Clifford algebras and their complexifications. Toward the end of the book, the author introduces ideas from the theory of Lie groups and Lie algebras. This treatment of Clifford algebras will be welcomed by graduate students and researchers in algebra.
Spinning Tops book cover
#51

Spinning Tops

A Course on Integrable Systems

1996

Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. Many mathematicians have established a modern view of the role played by algebraic geometry in recent years. This book presents some of these modern techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, while in appendices the author describes general, abstract theory. She gives the methods a topological application, for the first time in book form, to the study of Liouville tori and their bifurcations.
Geometric Control Theory book cover
#52

Geometric Control Theory

1996

This book describes the mathematical theory inspired by the irreversible nature of time-evolving events. The first part of the book deals with the ability to steer a system from any point of departure to any desired destination. The second part deals with optimal control—the problem of finding the best possible course. The author demonstrates an overlap with mathematical physics using the maximum principle, a fundamental concept of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. He draws applications from geometry, mechanics, and control of dynamical systems. The geometric language in which the author expresses the results allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
Groups as Galois Groups book cover
#53

Groups as Galois Groups

An Introduction

1996

This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realization of groups as Galois groups. The second part presents more advanced topics, such as braid group action and moduli spaces for covers of the Riemann sphere, GAR- and GAL- realizations, and patching over complete valued fields. Graduate students and mathematicians from other areas (especially group theory) will find this an excellent introduction to a fascinating field.
Automorphic Forms and Representations book cover
#55

Automorphic Forms and Representations

1997

This book covers both the classical and representation theoretic views of automorphic forms in a style that is accessible to graduate students entering the field. The treatment is based on complete proofs, which reveal the uniqueness principles underlying the basic constructions. The book features extensive foundational material on the representation theory of GL(1) and GL(2) over local fields, the theory of automorphic representations, L-functions and advanced topics such as the Langlands conjectures, the Weil representation, the Rankin-Selberg method and the triple L-function, and examines this subject matter from many different and complementary viewpoints. Researchers as well as students in algebra and number theory will find this a valuable guide to a notoriously difficult subject.
Cohomology of Drinfeld Modular Varieties book cover
#56

Cohomology of Drinfeld Modular Varieties

1997

Cohomology of Drinfeld Modular Varieties aims to provide an introduction to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the ArthurSHSelberg trace formula, and to the proof in some cases of the Ramanujan-Petersson conjecture and the global Langlands conjecture for function fields. The author uses techniques that are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. This book will be of much interest to all researchers in algebraic number theory and representation theory.
Natural Dualities for the Working Algebraist book cover
#57

Natural Dualities for the Working Algebraist

1998

The theory of natural dualities, as presented in this text, is broad enough to encompass many known dualities through a rich assortment of substantive theorems yet concrete enough to be used to generate an array of previously undiscovered dualities. This text will serve as a user manual for algebraists, for category theorists and for those who use algebra in their work, particularly mathematicians and computer scientists interested in non-classical logics. It will also give the specialist a complete account of the foundations, leading to the research frontier of this rapidly developing field. As the first text devoted to the theory of Natural Dualities, it provides an efficient path through a large body of results, examples and applications in this subject which is otherwise available only in scattered research papers. To enable the book to be used in courses, each chapter ends with an extensive exercise set. Several fundamental unsolved problems are included.
A User's Guide to Spectral Sequences book cover
#58

A User's Guide to Spectral Sequences

2000

Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
Practical Foundations of Mathematics book cover
#59

Practical Foundations of Mathematics

1999

Practical Foundations of Mathematics explains the basis of mathematical reasoning both in pure mathematics itself (algebra and topology in particular) and in computer science. In addition to the formal logic, this volume examines the relationship between computer languages and "plain English" mathematical proofs. The book introduces the reader to discrete mathematics, reasoning, and categorical logic. It offers a new approach to term algebras, induction and recursion and proves in detail the equivalence of types and categories. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries across universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
Local Cohomology book cover
#60

Local Cohomology

An Algebraic Introduction with Geometric Applications

1998

This book provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, and illustrates many applications for the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Castelnuovo-Mumford regularity, the Fulton-Hansen connectedness theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. It is designed for graduate students who have some experience of basic commutative algebra and homological algebra, and also for experts in commutative algebra and algebraic geometry.
#61

Analytic Pro-P Groups (Cambridge Studies in Advanced Mathematics) by J. D. Dixon (18-Sep-2003) Paperback

1991

Excellent Book
Cambridge Studies in Advanced Mathematics, Volume 62 book cover
#62

Cambridge Studies in Advanced Mathematics, Volume 62

Enumerative Combinatorics, Volume 2

1999

This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.
Uniform Central Limit Theorems book cover
#63

Uniform Central Limit Theorems

1999

This book shows how, when samples become large, the probability laws of large numbers and related facts are guaranteed to hold over wide domains. The author, an acknowledged expert, gives a thorough treatment of the subject, including several topics not found in any previous book, such as the Fernique-Talagrand majorizing measure theorem for Gaussian processes, an extended treatment of Vapnik-Chervonenkis combinatorics, the Ossiander L2 bracketing central limit theorem, the Giné-Zinn bootstrap central limit theorem in probability, the Bronstein theorem on approximation of convex sets, and the Shor theorem on rates of convergence over lower layers. Other recent results of Talagrand and others are surveyed without proofs in separate sections. Problems are included at the end of each chapter so the book can be used as an advanced text. The book will interest mathematicians with an interest in probability, mathematical statisticians, and computer scientists working in computer learning theory.
Calculus of Variations book cover
#64

Calculus of Variations

1999

This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and the classical issues such as Euler-Lagrange equations are treated, as are Noether's theorem, Hamilton-Jacobi theory, and in particular geodesic lines, thereby developing some important geometric and topological aspects. The basic ideas of optimal control theory are also given. The second part of the book deals with multiple integrals. After a review of Lebesgue integration, Banach and Hilbert space theory and Sobolev spaces (with complete and detailed proofs), there is a treatment of the direct methods and the fundamental lower semicontinuity theorems. Subsequent chapters introduce the basic concepts of the modern calculus of variations, namely relaxation, Gamma convergence, bifurcation theory and minimax methods based on the Palais-Smale condition. The prerequisites are knowledge of the basic results from calculus of one and several variables. After having studied this book, the reader will be well equipped to read research papers in the calculus of variations.
An Introduction to Rings and Modules book cover
#65

An Introduction to Rings and Modules

With K-Theory in View

2000

This concise introduction to ring theory, module theory and number theory is ideal for a first year graduate student, as well as being an excellent reference for working mathematicians in other areas. Starting from definitions, the book introduces fundamental constructions of rings and modules, as direct sums or products, and by exact sequences. It then explores the structure of modules over various types of noncommutative polynomial rings, Artinian rings (both semisimple and not), and Dedekind domains. It also shows how Dedekind domains arise in number theory, and explicitly calculates some rings of integers and their class groups. About 200 exercises complement the text and introduce further topics. This book provides the background material for the authors' forthcoming companion volume Categories and Modules. Armed with these two texts, the reader will be ready for more advanced topics in K-theory, homological algebra and algebraic number theory.
Holomorphic Dynamics book cover
#66

Holomorphic Dynamics

2000

Here is a comprehensive introduction to holomorphic dynamics, that is, the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, for example, with the discovery of the Mandelbrot set, and work on chaotic behavior of quadratic maps. The mathematically unified treatment emphasizes the substantial role of classical complex analysis in understanding holomorphic dynamics and offers up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Hénon maps, as well as the case of rational functions.
Categories and Modules with K-Theory in View book cover
#67

Categories and Modules with K-Theory in View

2000

This book develops aspects of category theory fundamental to the study of algebraic K-theory. Starting with categories in general, the text then examines categories of K-theory and moves on to tensor products and the Morita theory. The categorical approach to localizations and completions of modules is formulated in terms of direct and inverse limits. The authors consider local-global techniques that supply information about modules from their localizations and completions and underlie some interesting applications of K-theory to number theory and geometry. Many useful exercises, concrete illustrations of abstract concepts, and an extensive list of references are included.
Lévy Processes and Infinitely Divisible Distributions book cover
#68

Lévy Processes and Infinitely Divisible Distributions

1999

Lévy processes are rich mathematical objects and constitute perhaps the most basic class of stochastic processes with a continuous time parameter. This book provides the reader with comprehensive basic knowledge of Lévy processes, and at the same time introduces stochastic processes in general. No specialist knowledge is assumed and proofs and exercises are given in detail. The author systematically studies stable and semi-stable processes and emphasizes the correspondence between Lévy processes and infinitely divisible distributions. All serious students of random phenomena will benefit from this volume.
Modular Forms and Galois Cohomology book cover
#69

Modular Forms and Galois Cohomology

2000

This book provides a comprehensive account of a key, perhaps the most important, theory that forms the basis of Taylor-Wiles proof of Fermat's last theorem. Hida begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and recent results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. He offers a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula.
Fourier Analysis and Partial Differential Equations book cover
#70

Fourier Analysis and Partial Differential Equations

2001

This modern introduction to Fourier analysis and partial differential equations is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations, including a fairly complete discussion of local and global well-posedness for the nonlinear Schrödinger and the Korteweg-de Vries equations; they turn their attention, in the two final chapters, to the nonperiodic setting, concentrating on problems that do not occur in the periodic case.
Analysis in Integer and Fractional Dimensions book cover
#71

Analysis in Integer and Fractional Dimensions

2001

This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and stochastic analysis. It focuses on "dimension" as a basic counter of degrees of freedom, leading to precise relations between combinatorial measurements and various indices originating from the classical inequalities of Khintchin, Littlewood and Grothendieck. Topics include the (two-dimensional) Grothendieck inequality and its extensions to higher dimensions, stochastic models of Brownian motion, degrees of randomness and Fréchet measures in stochastic analysis. This book is primarily aimed at graduate students specializing in harmonic analysis, functional analysis or probability theory. It contains many exercises and is suitable as a textbook. It is also of interest to computer scientists, physicists, statisticians, biologists and economists.
Galois Theories book cover
#72

Galois Theories

2001

Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context. The authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience, the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. For all algebraists and category theorists this book will be a rewarding read.
Random Graphs book cover
#73

Random Graphs

1985

This is a new edition of the now classic text. The already extensive treatment given in the first edition has been heavily revised by the author. The addition of two new sections, numerous new results and 150 references means that this represents an up-to-date and comprehensive account of random graph theory. The theory estimates the number of graphs of a given degree that exhibit certain properties. It not only has numerous combinatorial applications, but also serves as a model for the probabilistic treatment of more complicated random structures. This book, written by an acknowledged expert in the field, can be used by mathematicians, computer scientists and electrical engineers, as well as people working in biomathematics. It is self contained, and with numerous exercises in each chapter, is ideal for advanced courses or self study.
Real Analysis and Probability book cover
#74

Real Analysis and Probability

1989

This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
Complex Polynomials book cover
#75

Complex Polynomials

2002

Complex Polynomials explores the geometric theory of polynomials and rational functions in the plane. Early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology, and analysis. Throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems. Several solutions to problems are given, including a comprehensive account of the geometric convolution theory.
Completely Bounded Maps and Operator Algebras book cover
#78

Completely Bounded Maps and Operator Algebras

2003

This book tours the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, along with some of their main applications. It requires only a basic background in functional analysis. The presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will appreciate how the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensible introduction to the theory of operator spaces.
Association Schemes book cover
#84

Association Schemes

Designed Experiments, Algebra and Combinatorics

2003

R.A. Bailey covers in this study the mathematics of association schemes—an area lying between pure mathematics and statistics that relates to the optimal design of scientific experiments. The book is accessible to mathematicians as well as statisticians. Arising from a graduate course taught by the author, it appeals to students as well as researchers as a valuable reference work from which to learn about the statistical/combinatorial aspects of their work.
Period Mappings and Period Domains book cover
#85

Period Mappings and Period Domains

2003

The concept of a period of an elliptic integral goes back to the 18th century. Later Abel, Gauss, Jacobi, Legendre, Weierstrass and others made a systematic study of these integrals. Rephrased in modern terminology, these give a way to encode how the complex structure of a two-torus varies, thereby showing that certain families contain all elliptic curves. Generalizing to higher dimensions resulted in the formulation of the celebrated Hodge conjecture, and in an attempt to solve this, Griffiths generalized the classical notion of period matrix and introduced period maps and period domains which reflect how the complex structure for higher dimensional varieties varies. The basic theory as developed by Griffiths is explained in the first part of the book. Then, in the second part spectral sequences and Koszul complexes are introduced and are used to derive results about cycles on higher dimensional algebraic varieties such as the Noether-Lefschetz theorem and Nori's theorem. Finally, in the third part differential geometric methods are explained leading up to proofs of Arakelov-type theorems, the theorem of the fixed part, the rigidity theorem, and more. Higgs bundles and relations to harmonic maps are discussed, and this leads to striking results such as the fact that compact quotients of certain period domains can never admit a Kahler metric or that certain lattices in classical Lie groups can't occur as the fundamental group of a Kahler manifold.
Multidimensional Real Analysis I book cover
#86

Multidimensional Real Analysis I

Differentiation

2004

Volume 1 provides a comprehensive review of differential analysis in multidimensional Euclidean space.
#89

Tolerance Graphs

2004

Tolerance graphs can be used to quantify the degree to which there is conflict or accord in a system and can provide solutions to questions in the form of "optimum arrangements." Arising from the authors' teaching graduate students in the U.S. and Israel, this book is intended for use in mathematics and computer science, where the subject can be applied to algorithmics. The inclusion of many exercises with partial solutions will increase the appeal of the book to instructors as well as graduate students.
Global Methods for Combinatorial Isoperimetric Problems book cover
#90

Global Methods for Combinatorial Isoperimetric Problems

2004

The study of combinatorial isoperimetric problems exploits similarities between discrete optimization problems and the classical continuous setting. Based on his many years of teaching experience, Larry Harper focuses on global methods of problem solving. His text will enable graduate students and researchers to quickly reach the most current state of research in this topic. Harper includes numerous worked examples, exercises and material about applications to computer science.
Introduction to Foliations and Lie Groupoids book cover
#91

Introduction to Foliations and Lie Groupoids

2003

Based on a graduate course taught at Utrecht University, this book provides a short introduction to the theory of Foliations and Lie Groupoids to students who have already taken a first course in differential geometry. Ieke Moerdijk and Janez Mrcun include detailed references to enable students to find the requisite background material in the research literature. The text features many exercises and worked examples.
An Introduction to Nonlinear Analysis book cover
#95

An Introduction to Nonlinear Analysis

2005

The techniques used to solve nonlinear problems differ greatly from those dealing with linear features. Deriving all the necessary theorems and principles from first principles, this textbook gives upper undergraduates and graduate students a thorough understanding using as little background material as possible.
Lie Algebras of Finite and Affine Type book cover
#96

Lie Algebras of Finite and Affine Type

2005

Lie algebras have many varied applications, both in mathematics and mathematical physics. This book provides a thorough but relaxed mathematical treatment of the subject, including both the Cartan-Killing-Weyl theory of finite dimensional simple algebras and the more modern theory of Kac-Moody algebras. Proofs are given in detail and the only prerequisite is a sound knowledge of linear algebra. The Appendix provides a summary of the basic properties of each Lie algebra of finite and affine type.
Multiplicative Number Theory I book cover
#97

Multiplicative Number Theory I

Classical Theory

2006

Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular, their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. This book comprehensively covers all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. The text is based on courses taught successfully over many years at the University of Michigan, Imperial College, London and Pennsylvania State University.
Riemannian Geometry book cover
#98

Riemannian Geometry

A Modern Introduction

1994

Requiring only an understanding of differentiable manifolds, Isaac Chavel covers introductory ideas followed by a selection of more specialized topics in this second edition. He provides a clearer treatment of many topics, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. Among the classical topics shown in a new setting is isoperimetric inequalities in curved spaces. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space.
Automorphic Forms and L-Functions for the Group GL(n,R) book cover
#99

Automorphic Forms and L-Functions for the Group GL(n,R)

2002

L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
Markov Processes, Gaussian Processes, and Local Times book cover
#100

Markov Processes, Gaussian Processes, and Local Times

2006

Written by two foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and for experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum, then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.
Central Simple Algebras and Galois Cohomology book cover
#101

Central Simple Algebras and Galois Cohomology

2006

This book is the first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields. Starting from the basics, it reaches such advanced results as the Merkurjev-Suslin theorem. This theorem is both the culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, but no homological algebra, the book covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. The last chapter rounds off the theory by presenting the results in positive characteristic, including the theorem of Bloch-Gabber-Kato. The book is suitable as a textbook for graduate students and as a reference for researchers working in algebra, algebraic geometry or K-theory.
Langlands Correspondence for Loop Groups book cover
#103

Langlands Correspondence for Loop Groups

2007

The Langlands Program was conceived initially as a bridge between Number Theory and Automorphic Representations, and has now expanded into such areas as Geometry and Quantum Field Theory, tying together seemingly unrelated disciplines into a web of tantalizing conjectures. A new chapter to this grand project is provided in this book. It develops the geometric Langlands Correspondence for Loop Groups, a new approach, from a unique perspective offered by affine Kac-Moody algebras. The theory offers fresh insights into the world of Langlands dualities, with many applications to Representation Theory of Infinite-dimensional Algebras, and Quantum Field Theory. This accessible text builds the theory from scratch, with all necessary concepts defined and the essential results proved along the way. Based on courses taught at Berkeley, the book provides many open problems which could form the basis for future research, and is accessible to advanced undergraduate students and beginning graduate students.
Nonlinear Analysis and Semilinear Elliptic Problems book cover
#104

Nonlinear Analysis and Semilinear Elliptic Problems

2007

Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics from critical point theory to elliptic partial differential equations. A series of Appendices give convenient accounts of a variety of advanced topics that will introduce the reader to areas of current research. The book is amply illustrated and many chapters are rounded off with a set of exercises.
Additive Combinatorics book cover
#105

Additive Combinatorics

2006

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.
Linear Operators and their Spectra book cover
#106

Linear Operators and their Spectra

2007

This wide ranging but self-contained account of the spectral theory of non-self-adjoint linear operators is ideal for postgraduate students and researchers, and contains many illustrative examples and exercises. Fredholm theory, Hilbert-Schmidt and trace class operators are discussed, as are one-parameter semigroups and perturbations of their generators. Two chapters are devoted to using these tools to analyze Markov semigroups. The text also provides a thorough account of the new theory of pseudospectra, and presents the recent analysis by the author and Barry Simon of the form of the pseudospectra at the boundary of the numerical range. This was a key ingredient in the determination of properties of the zeros of certain orthogonal polynomials on the unit circle. Finally, two methods, both very recent, for obtaining bounds on the eigenvalues of non-self-adjoint Schrodinger operators are described. The text concludes with a description of the surprising spectral properties of the non-self-adjoint harmonic oscillator.
Complex Analysis book cover
#107

Complex Analysis

2007

This textbook is an introduction to the classical theory of functions of a complex variable. The author's aim is to explain the basic theory in an easy to understand and careful way. He emphasizes geometrical considerations, and, to avoid topological difficulties associated with complex analysis, begins by deriving Cauchy's integral formula in a topologically simple case and then deduces the basic properties of continuous and differentiable functions. The remainder of the book deals with conformal mappings, analytic continuation, Riemann's mapping theorem, Riemann surfaces and analytic functions on a Riemann surface. The book is profusely illustrated and includes many examples. Problems are collected together at the end of the book. It should be an ideal text for either a first course in complex analysis or more advanced study.
An Introduction to Contact Topology book cover
#109

An Introduction to Contact Topology

2007

This text on contact topology is the first comprehensive introduction to the subject, including recent striking applications in geometric and differential Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology where the focus mainly on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums.
Analysis on Lie Groups book cover
#110

Analysis on Lie Groups

An Introduction

2008

This self-contained text concentrates on the perspective of analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author describes, in detail, many interesting examples, including formulas which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.
Complex Topological K-Theory book cover
#111

Complex Topological K-Theory

2008

Topological K-theory is a key tool in topology, differential geometry and index theory, yet this is the first contemporary introduction for graduate students new to the subject. No background in algebraic topology is assumed; the reader need only have taken the standard first courses in real analysis, abstract algebra, and point-set topology. The book begins with a detailed discussion of vector bundles and related algebraic notions, followed by the definition of K-theory and proofs of the most important theorems in the subject, such as the Bott periodicity theorem and the Thom isomorphism theorem. The multiplicative structure of K-theory and the Adams operations are also discussed and the final chapter details the construction and computation of characteristic classes. With every important aspect of the topic covered, and exercises at the end of each chapter, this is the definitive book for a first course in topological K-theory.
Partial Differential Equations for Probabilists book cover
#112

Partial Differential Equations for Probabilists

2008

This book deals with equations that have played a central role in the interplay between partial differential equations and probability theory. Most of this material has been treated elsewhere, but it is rarely presented in a manner that makes it readily accessible to people whose background is probability theory. Many results are given new proofs designed for readers with limited expertise in analysis. The author covers the theory of linear, second order partial differential equations of parabolic and elliptic type. Many of the techniques have antecedents in probability theory, although the book also covers a few purely analytic techniques. In particular, a chapter is devoted to the DeGiorgi-Moser-Nash estimates and the concluding chapter gives an introduction to the theory of pseudodifferential operators and their application to hypoellipticity, including the famous theorem of Lars Hörmander.
An Introduction to Lie Groups and Lie Algebras book cover
#113

An Introduction to Lie Groups and Lie Algebras

2008

This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semisimple Lie algebras. Lie theory, in its own right, has become regarded as a classical branch of mathematics. Written in an informal style, this is a contemporary introduction to the subject which emphasizes the main concepts of the proofs and outlines the necessary technical details, allowing the material to be conveyed concisely. Based on a lecture course given by the author at the State University of New York at Stony Brook, the book includes numerous exercises and worked examples and is ideal for graduate courses on Lie groups and Lie algebras.
Mathematical Tools for One-Dimensional Dynamics book cover
#115

Mathematical Tools for One-Dimensional Dynamics

2008

Detailing the very latest research, this self-contained book discusses the major mathematical tools necessary for the study of complex dynamics at an advanced level. Complete proofs of some of the major tools are presented; some, such as the Bers-Royden theorem on holomorphic motions, appear for the very first time in book format. Originating with the pioneering works of P. Fatou and G. Julia, the subject of complex dynamics has seen great advances in recent years. This necessary book will appeal to graduate students and researchers working in dynamical systems and related fields. Carefully chosen exercises aid understanding and provide a glimpse of further developments in real and complex one-dimensional dynamics.
#116

Levy Processes and Stochastic Calculus

2004

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
Galois Groups and Fundamental Groups book cover
#117

Galois Groups and Fundamental Groups

2009

Ever since the concepts of Galois groups in algebra and fundamental groups in topology emerged during the nineteenth century, mathematicians have known of the strong analogies between the two concepts. This book presents the connection starting at an elementary level, showing how the judicious use of algebraic geometry gives access to the powerful interplay between algebra and topology that underpins much modern research in geometry and number theory. Assuming as little technical background as possible, the book starts with basic algebraic and topological concepts, but already presented from the modern viewpoint advocated by Grothendieck. This enables a systematic yet accessible development of the theories of fundamental groups of algebraic curves, fundamental groups of schemes, and Tannakian fundamental groups. The connection between fundamental groups and linear differential equations is also developed at increasing levels of generality. Key applications and recent results, for example on the inverse Galois problem, are given throughout.
An Introduction to Random Matrices book cover
#118

An Introduction to Random Matrices

2009

The theory of random matrices plays an important role in many areas of pure mathematics and employs a variety of sophisticated mathematical tools (analytical, probabilistic and combinatorial). This diverse array of tools, while attesting to the vitality of the field, presents several formidable obstacles to the newcomer, and even the expert probabilist. This rigorous introduction to the basic theory is sufficiently self-contained to be accessible to graduate students in mathematics or related sciences, who have mastered probability theory at the graduate level, but have not necessarily been exposed to advanced notions of functional analysis, algebra or geometry. Useful background material is collected in the appendices and exercises are also included throughout to test the reader's understanding. Enumerative techniques, stochastic analysis, large deviations, concentration inequalities, disintegration and Lie algebras all are introduced in the text, which will enable readers to approach the research literature with confidence.
#119

Locally Convex Spaces Over Non-Archimedean Valued Fields

2006

Non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers are fundamental, is a fast-growing discipline widely used not just within pure mathematics, but also applied in other sciences, including physics, biology and chemistry. This book is the first to provide a comprehensive treatment of non-Archimedean locally convex spaces. The authors provide a clear exposition of the basic theory, together with complete proofs and new results from the latest research. A guide to the many illustrative examples provided, end-of-chapter notes and glossary of terms all make this book easily accessible to beginners at the graduate level, as well as specialists from a variety of disciplines.
Multidimensional Stochastic Processes as Rough Paths book cover
#120

Multidimensional Stochastic Processes as Rough Paths

Theory and Applications

2010

Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.
Representation Theory of the Symmetric Groups book cover
#121

Representation Theory of the Symmetric Groups

The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras

2010

The representation theory of the symmetric groups is a classical topic that, since the pioneering work of Frobenius, Schur and Young, has grown into a huge body of theory, with many important connections to other areas of mathematics and physics. This self-contained book provides a detailed introduction to the subject, covering classical topics such as the Littlewood–Richardson rule and the Schur–Weyl duality. Importantly the authors also present many recent advances in the area, including Lassalle’s character formulas, the theory of partition algebras, and an exhaustive exposition of the approach developed by A. M. Vershik and A. Okounkov. A wealth of examples and exercises makes this an ideal textbook for graduate students. It will also serve as a useful reference for more experienced researchers across a range of areas, including algebra, computer science, statistical mechanics and theoretical physics.
An Outline of Ergodic Theory book cover
#122

An Outline of Ergodic Theory

2010

This informal introduction provides a fresh perspective on isomorphism theory, which is the branch of ergodic theory that explores the conditions under which two measure preserving systems are essentially equivalent. It contains a primer in basic measure theory, proofs of fundamental ergodic theorems, and material on entropy, martingales, Bernoulli processes, and various varieties of mixing. Original proofs of classic theorems - including the Shannon–McMillan–Breiman theorem, the Krieger finite generator theorem, and the Ornstein isomorphism theorem - are presented by degrees, together with helpful hints that encourage the reader to develop the proofs on their own. Hundreds of exercises and open problems are also included, making this an ideal text for graduate courses. Professionals needing a quick review, or seeking a different perspective on the subject, will also value this book.
Random Walk book cover
#123

Random Walk

A Modern Introduction

2010

Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.
Representations of Groups book cover
#124

Representations of Groups

A Computational Approach

2010

The representation theory of finite groups has seen rapid growth in recent years with the development of efficient algorithms and computer algebra systems. This is the first book to provide an introduction to the ordinary and modular representation theory of finite groups with special emphasis on the computational aspects of the subject. Evolving from courses taught at Aachen University, this well-paced text is ideal for graduate-level study. The authors provide over 200 exercises, both theoretical and computational, and include worked examples using the computer algebra system GAP. These make the abstract theory tangible and engage students in real hands-on work. GAP is freely available from www.gap-system.org and readers can download source code and solutions to selected exercises from the book's web page.
p-adic Differential Equations (Cambridge Studies in Advanced Mathematics, Vol. 125) book cover
#125

p-adic Differential Equations (Cambridge Studies in Advanced Mathematics, Vol. 125)

2010

Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Special Functions book cover
#126

Special Functions

A Graduate Text

2010

The subject of special functions is often presented as a collection of disparate results, which are rarely organised in a coherent way. This book answers the need for a different approach to the subject. The authors' main goals are to emphasise general unifying principles coherently and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations – the hypergeometric equation and the confluent hypergeometric equation – and describe the various ways in which these equations are canonical and special. Providing ready access to theory and formulas, this book serves as an ideal graduate-level textbook as well as a convenient reference.
Mathematical Aspects of Quantum Field Theory book cover
#127

Mathematical Aspects of Quantum Field Theory

2010

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Zeta Functions of Graphs book cover
#128

Zeta Functions of Graphs

A Stroll through the Garden

2010

Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Pitched at beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and diagrams, and exercises throughout, theoretical and computer-based.
The Theory of Fusion Systems book cover
#131

The Theory of Fusion Systems

An Algebraic Approach

2011

Fusion systems are a recent development in finite group theory and sit at the intersection of algebra and topology. This book is the first to deal comprehensively with this new and expanding field, taking the reader from the basics of the theory right to the state of the art. Three motivational chapters, indicating the interaction of fusion and fusion systems in group theory, representation theory and topology are followed by six chapters that explore the theory of fusion systems themselves. Starting with the basic definitions, the topics covered include: weakly normal and normal subsystems; morphisms and quotients; saturation theorems; results about control of fusion; and the local theory of fusion systems. At the end there is also a discussion of exotic fusion systems. Designed for use as a text and reference work, this book is suitable for graduate students and experts alike.
Geometric Analysis book cover
#134

Geometric Analysis

2012

The aim of this graduate-level text is to equip the reader with the basic tools and techniques needed for research in various areas of geometric analysis. Throughout, the main theme is to present the interaction of partial differential equations and differential geometry. More specifically, emphasis is placed on how the behavior of the solutions of a PDE is affected by the geometry of the underlying manifold and vice versa. For efficiency the author mainly restricts himself to the linear theory and only a rudimentary background in Riemannian geometry and partial differential equations is assumed. Originating from the author's own lectures, this book is an ideal introduction for graduate students, as well as a useful reference for experts in the field.
Local Cohomology book cover
#136

Local Cohomology

An Algebraic Introduction with Geometric Applications

2012

This second edition of a successful graduate text provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, including in multi-graded situations, and provides many illustrations of the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Serre's Affineness Criterion, the Lichtenbaum–Hartshorne Vanishing Theorem, Grothendieck's Finiteness Theorem and Faltings' Annihilator Theorem, local duality and canonical modules, the Fulton–Hansen Connectedness Theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. The book is designed for graduate students who have some experience of basic commutative algebra and homological algebra and also experts in commutative algebra and algebraic geometry. Over 300 exercises are interspersed among the text; these range in difficulty from routine to challenging, and hints are provided for some of the more difficult ones.
Spectral Theory and its Applications book cover
#139

Spectral Theory and its Applications

2012

Bernard Helffer's graduate-level introduction to the basic tools in spectral analysis is illustrated by numerous examples from the Schrödinger operator theory and various branches of statistical mechanics, superconductivity, fluid mechanics and kinetic theory. The later chapters also introduce non self-adjoint operator theory with an emphasis on the role of the pseudospectra. The author's focus on applications, along with exercises and examples, enables readers to connect theory with practice so that they develop a good understanding of how the abstract spectral theory can be applied. The final chapter provides various problems that have been the subject of active research in recent years and will challenge the reader's understanding of the material covered.
Analytic Combinatorics in Several Variables book cover
#140

Analytic Combinatorics in Several Variables

2013

This book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective. Analytic combinatorics is a branch of enumeration that uses analytic techniques to estimate combinatorial generating functions are defined and their coefficients are then estimated via complex contour integrals. The multivariate case involves techniques well known in other areas of mathematics but not in combinatorics. Aimed at graduate students and researchers in enumerative combinatorics, the book contains all the necessary background, including a review of the uses of generating functions in combinatorial enumeration as well as chapters devoted to saddle point analysis, Groebner bases, Laurent series and amoebas, and a smattering of differential and algebraic topology. All software along with other ancillary material can be located via the book Web site,
Quasiconformal Surgery in Holomorphic Dynamics book cover
#141

Quasiconformal Surgery in Holomorphic Dynamics

2013

Since its introduction in the early 1980s quasiconformal surgery has become a major tool in the development of the theory of holomorphic dynamics, and it is essential background knowledge for any researcher in the field. In this comprehensive introduction the authors begin with the foundations and a general description of surgery techniques before turning their attention to a wide variety of applications. They demonstrate the different types of surgeries that lie behind many important results in holomorphic dynamics, dealing in particular with Julia sets and the Mandelbrot set. Two of these surgeries go beyond the classical realm of quasiconformal surgery and use trans-quasiconformal surgery. Another deals with holomorphic correspondences, a natural generalization of holomorphic maps. The book is ideal for graduate students and researchers requiring a self-contained text including a variety of applications. It particularly emphasises the geometrical ideas behind the proofs, with many helpful illustrations seldom found in the literature.
#142

Uniform Central Limit Theorems

2014

This classic work on empirical processes has been considerably expanded and revised from the original edition. When samples become large, the probability laws of large numbers and central limit theorems are guaranteed to hold uniformly over wide domains. The author, an acknowledged expert, gives a thorough treatment of the subject, including the Fernique-Talagrand majorizing measure theorem for Gaussian processes, an extended treatment of Vapnik-Chervonenkis combinatorics, the Ossiander L2 bracketing central limit theorem, the Gin�-Zinn bootstrap central limit theorem in probability, the Bronstein theorem on approximation of convex sets, and the Shor theorem on rates of convergence over lower layers. This new edition contains several proved theorems not included in the first edition, including the Bretagnolle-Massart theorem giving constants in the Komlos-Major-Tusnady rate of convergence for the classical empirical process, Massart's form of the Dvoretzky-Kiefer-Wolfowitz inequality with precise constant, Talagrand's generic chaining approach to boundedness of Gaussian processes, a characterization of uniform Glivenko-Cantelli classes of functions, Gin� and Zinn's characterization of uniform Donsker classes (i.e., classing Donsker uniformly over all probability measures P), and the Bousquet-Koltchinskii-Panchenko theorem that the convex hull of a uniform Donsker class is uniform Donsker. The book will be an essential reference for mathematicians working in infinite-dimensional central limit theorems, mathematical statisticians, and computer scientists working in computer learning theory. Problems are included at the end of each chapter so the book can also be used as an advanced text.
Basic Category Theory book cover
#143

Basic Category Theory

2014

At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.
Cox Rings book cover
#144

Cox Rings

2014

Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty.
Lectures on Lyapunov Exponents book cover
#145

Lectures on Lyapunov Exponents

2014

The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.
Unit Equations in Diophantine Number Theory book cover
#146

Unit Equations in Diophantine Number Theory

2015

Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.
Representation Theory book cover
#147

Representation Theory

A Combinatorial Viewpoint

2014

This book discusses the representation theory of symmetric groups, the theory of symmetric functions and the polynomial representation theory of general linear groups. The first chapter provides a detailed account of necessary representation-theoretic background. An important highlight of this book is an innovative treatment of the Robinson–Schensted–Knuth correspondence and its dual by extending Viennot's geometric ideas. Another unique feature is an exposition of the relationship between these correspondences, the representation theory of symmetric groups and alternating groups and the theory of symmetric functions. Schur algebras are introduced very naturally as algebras of distributions on general linear groups. The treatment of Schur–Weyl duality reveals the directness and simplicity of Schur's original treatment of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Erdõs–Ko–Rado Theorems book cover
#149

Erdõs–Ko–Rado Theorems

Algebraic Approaches

2015

Aimed at graduate students and researchers, this fascinating text provides a comprehensive study of the Erdős–Ko–Rado Theorem, with a focus on algebraic methods. The authors begin by discussing well-known proofs of the EKR bound for intersecting families. The natural generalization of the EKR Theorem holds for many different objects that have a notion of intersection, and the bulk of this book focuses on algebraic proofs that can be applied to these different objects. The authors introduce tools commonly used in algebraic graph theory and show how these can be used to prove versions of the EKR Theorem. Topics include association schemes, strongly regular graphs, the Johnson scheme, the Hamming scheme and the Grassmann scheme. Readers can expand their understanding at every step with the 170 end-of-chapter exercises. The final chapter discusses in detail 15 open problems, each of which would make an interesting research project.
Fourier Analysis and Hausdorff Dimension book cover
#150

Fourier Analysis and Hausdorff Dimension

2015

During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
Foundations of Ergodic Theory book cover
#151

Foundations of Ergodic Theory

2015

Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.
An Introduction to the Theory of Reproducing Kernel Hilbert Spaces book cover
#152

An Introduction to the Theory of Reproducing Kernel Hilbert Spaces

2016

Reproducing kernel Hilbert spaces have developed into an important tool in many areas, especially statistics and machine learning, and they play a valuable role in complex analysis, probability, group representation theory, and the theory of integral operators. This unique text offers a unified overview of the topic, providing detailed examples of applications, as well as covering the fundamental underlying theory, including chapters on interpolation and approximation, Cholesky and Schur operations on kernels, and vector-valued spaces. Self-contained and accessibly written, with exercises at the end of each chapter, this unrivalled treatment of the topic serves as an ideal introduction for graduate students across mathematics, computer science, and engineering, as well as a useful reference for researchers working in functional analysis or its applications.
Special Functions and Orthogonal Polynomials book cover
#153

Special Functions and Orthogonal Polynomials

2016

The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century'.
Optimal Control and Geometry book cover
#154

Optimal Control and Geometry

Integrable Systems

2016

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.
Martingales in Banach Spaces book cover
#155

Martingales in Banach Spaces

2016

This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
Differential Topology book cover
#156

Differential Topology

2016

Exploring the full scope of differential topology, this comprehensive account of geometric techniques for studying the topology of smooth manifolds offers a wide perspective on the field. Building up from first principles, concepts of manifolds are introduced, supplemented by thorough appendices giving background on topology and homotopy theory. Deep results are then developed from these foundations through in-depth treatments of the notions of general position and transversality, proper actions of Lie groups, handles (up to the h-cobordism theorem), immersions and embeddings, concluding with the surgery procedure and cobordism theory. Fully illustrated and rigorous in its approach, little prior knowledge is assumed, and yet growing complexity is instilled throughout. This structure gives advanced students and researchers an accessible route into the wide-ranging field of differential topology.
The Three-Dimensional Navier–Stokes Equations book cover
#157

The Three-Dimensional Navier–Stokes Equations

Classical Theory

2016

A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier-Stokes equations, this book provides self-contained proofs of some of the most significant results in the area, many of which can only be found in research papers. Highlights include the existence of global-in-time Leray-Hopf weak solutions and the local existence of strong solutions; the conditional local regularity results of Serrin and others; and the partial regularity results of Caffarelli, Kohn, and Nirenberg. Appendices provide background material and proofs of some 'standard results' that are hard to find in the literature. A substantial number of exercises are included, with full solutions given at the end of the book. As the only introductory text on the topic to treat all of the mainstream results in detail, this book is an ideal text for a graduate course of one or two semesters. It is also a useful resource for anyone working in mathematical fluid dynamics.
Stochastic Analysis book cover
#159

Stochastic Analysis

Itô and Malliavin Calculus in Tandem

2016

Thanks to the driving forces of the Itô calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.
A Course in Finite Group Representation Theory book cover
#161

A Course in Finite Group Representation Theory

2016

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Fractals in Probability and Analysis book cover
#162

Fractals in Probability and Analysis

2016

This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic.
Gaussian Processes on Trees book cover
#163

Gaussian Processes on Trees

From Spin Glasses to Branching Brownian Motion

2016

Branching Brownian motion (BBM) is a classical object in probability theory with deep connections to partial differential equations. This book highlights the connection to classical extreme value theory and to the theory of mean-field spin glasses in statistical mechanics. Starting with a concise review of classical extreme value statistics and a basic introduction to mean-field spin glasses, the author then focuses on branching Brownian motion. Here, the classical results of Bramson on the asymptotics of solutions of the F-KPP equation are reviewed in detail and applied to the recent construction of the extremal process of BBM. The extension of these results to branching Brownian motion with variable speed are then explained. As a self-contained exposition that is accessible to graduate students with some background in probability theory, this book makes a good introduction for anyone interested in accessing this exciting field of mathematics.
#164

Galois Representations and (Phi, Gamma)-Modules

2017

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.
Geometry and Complexity Theory book cover
#169

Geometry and Complexity Theory

2017

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.
Quantum Fields and Processes book cover
#171

Quantum Fields and Processes

A Combinatorial Approach

2018

Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists, quantum field theorists, and probabilists, including graduate and advanced undergraduate students.
Discrete Harmonic Analysis book cover
#172

Discrete Harmonic Analysis

Representations, Number Theory, Expanders, and the Fourier Transform

2018

This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.
Character Theory and the McKay Conjecture book cover
#175

Character Theory and the McKay Conjecture

2018

The McKay conjecture is the origin of the counting conjectures in the representation theory of finite groups. This book gives a comprehensive introduction to these conjectures, while assuming minimal background knowledge. Character theory is explored in detail along the way, from the very basics to the state of the art. This includes not only older theorems, but some brand new ones too. New, elegant proofs bring the reader up to date on progress in the field, leading to the final proof that if all finite simple groups satisfy the inductive McKay condition, then the McKay conjecture is true. Open questions are presented throughout the book, and each chapter ends with a list of problems, with varying degrees of difficulty.
Eisenstein Series and Automorphic Representations book cover
#176

Eisenstein Series and Automorphic Representations

With Applications in String Theory

2018

This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
Formal Geometry and Bordism Operations book cover
#177

Formal Geometry and Bordism Operations

2018

This text organizes a range of results in chromatic homotopy theory, running a single thread through theorems in bordism and a detailed understanding of the moduli of formal groups. It emphasizes the naturally occurring algebro-geometric models that presage the topological results, taking the reader through a pedagogical development of the field. In addition to forming the backbone of the stable homotopy category, these ideas have found application in other the daughter subject 'elliptic cohomology' abuts mathematical physics, manifold geometry, topological analysis, and the representation theory of loop groups. The common language employed when discussing these subjects showcases their unity and guides the reader breezily from one domain to the next, ultimately culminating in the construction of Witten's genus for String manifolds. This text is an expansion of a set of lecture notes for a topics course delivered at Harvard University during the spring term of 2016.
Lectures on Logarithmic Algebraic Geometry book cover
#178

Lectures on Logarithmic Algebraic Geometry

2018

This graduate textbook offers a self-contained introduction to the concepts and techniques of logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry and number theory. It features a systematic exposition of the foundations of the field, from the basic results on convex geometry and commutative monoids to the theory of logarithmic schemes and their de Rham and Betti cohomology. The book will be of use to graduate students and researchers working in algebraic, analytic, and arithmetic geometry as well as related fields.
#179

Hardy Spaces

2019

The theory of Hardy spaces is a cornerstone of modern analysis. It combines techniques from functional analysis, the theory of analytic functions and Lesbesgue integration to create a powerful tool for many applications, pure and applied, from signal processing and Fourier analysis to maximum modulus principles and the Riemann zeta function. This book, aimed at beginning graduate students, introduces and develops the classical results on Hardy spaces and applies them to fundamental concrete problems in analysis. The results are illustrated with numerous solved exercises that also introduce subsidiary topics and recent developments. The reader's understanding of the current state of the field, as well as its history, are further aided by engaging accounts of important contributors and by the surveys of recent advances (with commented reference lists) that end each chapter. Such broad coverage makes this book the ideal source on Hardy spaces.
Higher Categories and Homotopical Algebra book cover
#180

Higher Categories and Homotopical Algebra

2019

This book provides an introduction to modern homotopy theory through the lens of higher categories after Joyal and Lurie, giving access to methods used at the forefront of research in algebraic topology and algebraic geometry in the twenty-first century. The text starts from scratch - revisiting results from classical homotopy theory such as Serre's long exact sequence, Quillen's theorems A and B, Grothendieck's smooth/proper base change formulas, and the construction of the Kan–Quillen model structure on simplicial sets - and develops an alternative to a significant part of Lurie's definitive reference Higher Topos Theory, with new constructions and proofs, in particular, the Yoneda Lemma and Kan extensions. The strong emphasis on homotopical algebra provides clear insights into classical constructions such as calculus of fractions, homotopy limits and derived functors. For graduate students and researchers from neighbouring fields, this book is a user-friendly guide to advanced tools that the theory provides for application.
A Comprehensive Introduction to Sub-Riemannian Geometry book cover
#181

A Comprehensive Introduction to Sub-Riemannian Geometry

2019

Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines.
Toeplitz Matrices and Operators book cover
#182

Toeplitz Matrices and Operators

2019

The theory of Toeplitz matrices and operators is a vital part of modern analysis, with applications to moment problems, orthogonal polynomials, approximation theory, integral equations, bounded- and vanishing-mean oscillations, and asymptotic methods for large structured determinants, among others. This friendly introduction to Toeplitz theory covers the classical spectral theory of Toeplitz forms and Wiener-Hopf integral operators and their manifestations throughout modern functional analysis. Numerous solved exercises illustrate the results of the main text and introduce subsidiary topics, including recent developments. Each chapter ends with a survey of the present state of the theory, making this a valuable work for the beginning graduate student and established researcher alike. With biographies of the principal creators of the theory and historical context also woven into the text, this book is a complete source on Toeplitz theory.
Fourier Restriction, Decoupling, and Applications book cover
#184

Fourier Restriction, Decoupling, and Applications

2019

The last fifteen years have seen a flurry of exciting developments in Fourier restriction theory, leading to significant new applications in diverse fields. This timely text brings the reader from the classical results to state-of-the-art advances in multilinear restriction theory, the Bourgain-Guth induction on scales and the polynomial method. Also discussed in the second part are decoupling for curved manifolds and a wide variety of applications in geometric analysis, PDEs (Strichartz estimates on tori, local smoothing for the wave equation) and number theory (exponential sum estimates and the proof of the Main Conjecture for Vinogradov's Mean Value Theorem). More than 100 exercises in the text help reinforce these important but often difficult ideas, making it suitable for graduate students as well as specialists. Written by an author at the forefront of the modern theory, this book will be of interest to everybody working in harmonic analysis.
Foundations of Stable Homotopy Theory book cover
#185

Foundations of Stable Homotopy Theory

2020

The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.
The Character Theory of Finite Groups of Lie Type book cover
#187

The Character Theory of Finite Groups of Lie Type

A Guided Tour

2020

Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne-Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish-Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
From Categories to Homotopy Theory book cover
#188

From Categories to Homotopy Theory

2020

Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Higher Index Theory book cover
#189

Higher Index Theory

2020

Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.
Generators of Markov Chains book cover
#190

Generators of Markov Chains

From a Walk in the Interior to a Dance on the Boundary

2020

Elementary treatments of Markov chains, especially those devoted to discrete-time and finite state-space theory, leave the impression that everything is smooth and easy to understand. This exposition of the works of Kolmogorov, Feller, Chung, Kato, and other mathematical luminaries, which focuses on time-continuous chains but is not so far from being elementary itself, reminds us again that the impression is an infinite, but denumerable, state-space is where the fun begins. If you have not heard of Blackwell's example (in which all states are instantaneous), do not understand what the minimal process is, or do not know what happens after explosion, dive right in. But beware lest you are 'There are more spells than your commonplace magicians ever dreamed of.'

Authors

Welington de Melo
Welington de Melo
Author · 2 books
Welington de Melo provém de Guapé, MG. É formado em Engenharia Elétrica pela Universidade Federal de Minas Gerais e obteve o Doutorado em Matemática no IMPA. Fez estágios de pós-doutorado em Berkeley, Califórnia e em Warwick, Inglaterra. É Pesquisador Titular do IMPA. Seus trabalhos de pesquisa versam sobre Sistemas Dinâmicos e Singularidades de Aplicações Diferenciáveis.
John Gough
Author · 1 books
Librarian Note: There is more than one author in the Goodreads database with this name. This profile may contain books from multiple authors of this name.
V.S. Varadarajan
Author · 2 books
Veeravalli Seshadri Varadarajan
Paul Taylor
Author · 2 books
Librarian Note: There is more than one author with this name in the Goodreads data base.
David M. Clark
Author · 1 books
Librarian Note: There is more than one author by this name in the Goodreads database.
C.T.C. Wall
Author · 2 books

Charles Terence Clegg ("Terry") Wall C.T.C. Wall mathematician

E Brian Davies
E Brian Davies
Author · 4 books

E. Brian Davies was awarded a first class degree in Mathematics at the University of Oxford in 1965 and a D Phil., also at Oxford, in 1968, when he was also awarded the Senior Mathematical Prize. After two years in the USA, at Princeton and MIT, he took up a permanent position as a Tutorial Fellow at St John’s College, Oxford. From 1973 he was a University Lecturer at the University of Oxford. In 1981 Davies was appointed as Professor of Mathematics at King's College, London, where he remained until his official retirement in 2010. He was Head of Department between 1990 and 1993. He was the founding Editor of the London Mathematical Society Student Texts between 1983 and 1990, and the founding Editor of the Journal of Spectral Theory, published by the European Mathematical Society, from 2010. In March 1995 Davies was elected a Fellow of the Royal Society, in recognition of his seminal work in spectral theory and particularly on the heat kernels of diffusion equations, of great relevance in quantum theory and other fields. In June 1996 he was elected a Fellow of King's College, London. In June 1998 he was awarded the Senior Berwick Prize by the London Mathematical Society. He was President of the London Mathematical Society in 2008 and 2009. As well as over two hundred research papers, Davies has published five monographs and two popular books on the philosophy of mathematics and science.

Marcelo Viana
Marcelo Viana
Author · 2 books

Marcelo Viana é um matemática luso-brasileiro conhecido pelo seu trabalho na teoria dos sistemas dinâmicos. Marcelo Viana nasce no Rio de Janeiro a 4 de Março de 1962, filho de imigrantes portugueses. Passa a infância e juventude em Portugal, onde nascem seus dois irmãos e onde gradua-se em Matemática pela Universidade do Porto. Pela classificação final alcançada recebe o prémio "Ciências Exactas", outorgado pela Fundação Eng. António José de Almeida, além de outros prémios académicos. É então que regressa ao Brasil para realizar o doutoramento no IMPA (Instituto Nacional de Matemática Pura e Aplicada) sob a orientação de Jacob Palis Jr., vindo a defender a sua tese "Atratores estranhos em variedades de dimensão arbitrária", em 1990. De então para cá vem desenvolvendo a sua carreira no IMPA, onde é actualmente Pesquisador Titular. Em 1993 é-lhe atribuída uma Guggenheim Fellowship, pela prestigiada Guggenheim Foundation de Nova Iorque, através da qual faz um estágio de pós-doutoramento na Universidade da Califórnia em Los Angeles (UCLA) e na Universidade de Princeton. Vem prosseguindo diversas linhas de pesquisa em Sistema Dinâmicos, especialmente: teoria matemática de sistemas caóticos; atractores estranhos e suas propriedades geométricas, dinâmicas, estatísticas; teoria das bifurcações, fenómenos homoclínicos, dimensões fractais. Tem cerca de vinte artigos originais de pesquisa publicados em revistas internacionais (incluindo Acta Mathematica, Annals of Mathematics, Inventiones Mathematicae, Publications Mathématiques de l'IHES) e uma dezena mais submetida para publicação ou em preparação. Mantém colaborações com pesquisadores em diversos centros internacionais, que visita com regularidade (KTH de Estocolmo, Universidade de Dijon, ETH de Zurique, Universidade de Paris-Sul). Participa nas principais reuniões científicas na sua área, totalizando cerca de trinta comunicações a congressos realizados em diversos países (incluindo Estados Unidos, Rússia, Japão, Alemanha, França, Holanda). Em 1994 foi distinguido com convites para falar perante o International Congress of Mathematicians e o International Congress of Mathematical Physics, as principais reuniões científicas em Matemática e em Matemática-Física. Essa distinção foi reiterada quatro anos depois com o convite para proferir uma Palestra Plenária no International Congress of Mathematicians de 1998. Tem uma já extensa experiência de ensino no nível de graduação, na Universidade do Porto, e de pós-graduação, no IMPA, onde lecciona regularmente cursos de doutoramento, mestrado ou iniciação científica. O seu primeiro estudante de doutorado defendeu a tese em 1997. Actualmente orienta as teses de outros oito alunos do IMPA. Em 1995 foi eleito membro do Conselho Diretor da Sociedade Brasileira de Matemática. No IMPA é Coordenador do Departamento de Atividades Científicas. Em 2015, tornou-se director do IMPA. É membro do Corpo Editorial das revistas Nonlinearity, Dynamics and Stability of Systems e Ergodic Theory and Dynamical Systems. É, moderadamente, botafoguense e frequentador esporádico da praia do Leblon. Gosta de ler e de escutar música, tendo gostos muito variados (com preferência por Bach e Pink Floyd).

P. Wojtaszczyk
Author · 1 books
Przemysaw Wojtaszczyk
Philippe Gille
Author · 1 books
Philippe Emile François Gille was a French dramatist and opera librettist elected to the Académie des beaux-arts in 1899.
Michele Audin
Michele Audin
Author · 2 books

Michèle Audin is a French mathematician, and a professor at l'Institut de recherche mathématique avancée (IRMA) in Strasbourg, where she does research notably in the area of symplectic geometry. Born in 1954, she is a former student of l'École normale supérieure de jeunes filles within the École normale supérieure Sèvres. She became a member of l'Oulipo in 2009. She is the daughter of mathematician Maurice Audin, who died under torture in 1957 in Algeria, after having been arrested by parachutists of General Jacques Massu. On January 1, 2009, she refused to receive the Legion of Honour, on the grounds that the President of France, Nicolas Sarkozy, had refused to respond to a letter written by her mother regarding the disappearance of her father. (from Wikipedia)

Edward Frenkel
Edward Frenkel
Author · 2 books

Edward Frenkel (Russian: Эдвард Френкель, Edvard Frenkel'; born May 2, 1968) is a mathematician working in representation theory, algebraic geometry, and mathematical physics. He is a professor of mathematics at University of California, Berkeley. Frenkel grew up in Kolomna, Russia to a family of Russian Jews. As a high school student he studied higher mathematics privately with Evgeny Evgenievich Petrov, although his initial interest was in quantum physics rather than mathematics.[1] He was not admitted to Moscow State University because of discrimination against Jews and enrolled instead in the applied mathematics program at the Gubkin University of Oil and Gas. While a student there, he attended the seminar of Israel Gelfand and worked with Boris Feigin and Dmitry Fuchs. After receiving his college degree in 1989, he was first invited to Harvard University as a visiting professor, and a year later he enrolled as a graduate student at Harvard. He received his Ph.D. at Harvard University in 1991, after one year of study, under the direction of Joseph Bernstein. He was a Junior Fellow at the Harvard Society of Fellows from 1991 to 1994, and served as an associate professor at Harvard from 1994 to 1997. He has been a professor of mathematics at University of California, Berkeley since 1997. Jointly with Boris Feigin, Frenkel constructed the free field realizations of affine Kac–Moody algebras (these are also known as Wakimoto modules), defined the quantum Drinfeld-Sokolov reduction, and described the center of the universal enveloping algebra of an affine Kac–Moody algebra. The last result, often referred to as Feigin–Frenkel isomorphism, has been used by Alexander Beilinson and Vladimir Drinfeld in their work on the geometric Langlands correspondence. Together with Nicolai Reshetikhin, Frenkel introduced deformations of W-algebras and q-characters of representations of quantum affine algebras. Frenkel's recent work has focused on the Langlands program and its connections to representation theory, integrable systems, geometry, and physics. Together with Dennis Gaitsgory and Kari Vilonen, he has proved the geometric Langlands conjecture for GL(n). His joint work with Robert Langlands and Ngô Bảo Châu suggested a new approach to the functoriality of automorphic representations and trace formulas. He has also been investigating (in particular, in a joint work with Edward Witten) connections between the geometric Langlands correspondence and dualities in quantum field theory. Frenkel has co-produced, co-directed (with Reine Graves) and played the lead in a short film "Rites of Love and Math", a homage to the film "Rite of Love and Death" (also known as "Yûkoku") by the Japanese writer Yukio Mishima. The film premiered in Paris in April, 2010 and was in the official competition of the Sitges International Film Festival in October, 2010. The screening of "Rites of Love and Math" in Berkeley on December 1, 2010 caused some controversy. Frenkel's book Love and Math The Heart of Hidden Reality was published in October 2013.

Jürgen Jost
Author · 2 books
Jürgen Jost is a German mathematician. He has been a director of the Max Planck Institute for Mathematics in the Sciences in Leipzig since 1996.
Terence Tao
Terence Tao
Author · 8 books
Terence "Terry" Tao FAA FRS (simplified Chinese: 陶哲轩; traditional Chinese: 陶哲軒; pinyin: Táo Zhéxuān) is an Australian-American mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, compressed sensing and analytic number theory. As of 2015, he holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles. Tao was a co-recipient of the 2006 Fields Medal and the 2014 Breakthrough Prize in Mathematics.
Peter Webb
Author · 5 books

Librarian Note: There is more than one author in the Goodreads database with this name. Peter Webb is a lecturer in Canadian literature at McGill University. He has published journal and book articles on Sara Jeannette Duncan, Timothy Findley, and Tom Thomson, and is writing a book-length study of war fiction entitled Shattered Lines: War in the Canadian Novel. He is a co-applicant member of the Editing Modernism in Canada (EMiC) research group.

Margaret A.M. Murray
Author · 2 books
Margaret A. M. Murray, formerly Professor of Mathematics at Virginia Tech, is Lecturer in Rhetoric and Adjunct Professor of Mathematics at the University of Iowa.
Richard P. Stanley
Author · 2 books
Richard P. Stanley (MIT)
Peter Schneider
Peter Schneider
Author · 10 books
Peter Schneider is a German novelist. His novel Lenz, published in 1973, had become a cult text for the Left, capturing the feelings of those disappointed by the failure of their utopian revolt. Since then, Peter Schneider has written novels, short stories and film scripts, that often deal with the fate of members of his generation. Other works deal with the situation of Berlin before and after German reunification. Schneider is also a major Essayist; having moved away from the radicalism of 1968, his work now appears predominantly in bourgeois publications.
548 Market St PMB 65688, San Francisco California 94104-5401 USA
© 2025 Paratext Inc. All rights reserved