
Central Simple Algebras and Galois Cohomology
2006
First Published
3.00
Average Rating
356
Number of Pages
Part of Series
This book is the first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields. Starting from the basics, it reaches such advanced results as the Merkurjev-Suslin theorem. This theorem is both the culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, but no homological algebra, the book covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. The last chapter rounds off the theory by presenting the results in positive characteristic, including the theorem of Bloch-Gabber-Kato. The book is suitable as a textbook for graduate students and as a reference for researchers working in algebra, algebraic geometry or K-theory.
Avg Rating
3.00
Number of Ratings
1
5 STARS
0%
4 STARS
0%
3 STARS
100%
2 STARS
0%
1 STARS
0%
goodreads
Authors
Philippe Gille
Author · 1 books
Philippe Emile François Gille was a French dramatist and opera librettist elected to the Académie des beaux-arts in 1899.